These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29422492)

  • 21. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A room temperature continuous-wave nanolaser using colloidal quantum wells.
    Yang Z; Pelton M; Fedin I; Talapin DV; Waks E
    Nat Commun; 2017 Jul; 8(1):143. PubMed ID: 28747633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters.
    Miura R; Imamura S; Ohta R; Ishii A; Liu X; Shimada T; Iwamoto S; Arakawa Y; Kato YK
    Nat Commun; 2014 Nov; 5():5580. PubMed ID: 25420679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Room Temperature Lasing from Semiconducting Single-Walled Carbon Nanotubes.
    Chen JS; Dasgupta A; Morrow DJ; Emmanuele R; Marks TJ; Hersam MC; Ma X
    ACS Nano; 2022 Oct; 16(10):16776-16783. PubMed ID: 36121213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanobeam photonic bandedge lasers.
    Kim S; Ahn BH; Kim JY; Jeong KY; Kim KS; Lee YH
    Opt Express; 2011 Nov; 19(24):24055-60. PubMed ID: 22109430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A printed nanobeam laser on a SiO₂/Si substrate for low-threshold continuous-wave operation.
    Karnadi I; Son J; Kim JY; Jang H; Lee S; Kim KS; Min B; Lee YH
    Opt Express; 2014 May; 22(10):12115-21. PubMed ID: 24921331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sub-microWatt threshold nanoisland lasers.
    Jang H; Karnadi I; Pramudita P; Song JH; Kim KS; Lee YH
    Nat Commun; 2015 Sep; 6():8276. PubMed ID: 26391800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser.
    Nozaki K; Kita S; Baba T
    Opt Express; 2007 Jun; 15(12):7506-14. PubMed ID: 19547074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thresholdless nanoscale coaxial lasers.
    Khajavikhan M; Simic A; Katz M; Lee JH; Slutsky B; Mizrahi A; Lomakin V; Fainman Y
    Nature; 2012 Feb; 482(7384):204-7. PubMed ID: 22318604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Demonstration of critical coupling in an active III-nitride microdisk photonic circuit on silicon.
    Tabataba-Vakili F; Doyennette L; Brimont C; Guillet T; Rennesson S; Damilano B; Frayssinet E; Duboz JY; Checoury X; Sauvage S; El Kurdi M; Semond F; Gayral B; Boucaud P
    Sci Rep; 2019 Dec; 9(1):18095. PubMed ID: 31792272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Room-temperature polariton lasing in GaN microrods with large Rabi splitting.
    Chen H; Li J; Yu G; Zong H; Lang R; Lei M; Li S; Khan MSA; Yang Y; Wei T; Liao H; Meng L; Wen P; Hu X
    Opt Express; 2022 May; 30(10):16794-16801. PubMed ID: 36221514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling.
    Kreinberg S; Chow WW; Wolters J; Schneider C; Gies C; Jahnke F; Höfling S; Kamp M; Reitzenstein S
    Light Sci Appl; 2017 Aug; 6(8):e17030. PubMed ID: 30167281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001).
    Zhou T; Tang M; Xiang G; Xiang B; Hark S; Martin M; Baron T; Pan S; Park JS; Liu Z; Chen S; Zhang Z; Liu H
    Nat Commun; 2020 Feb; 11(1):977. PubMed ID: 32080180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual wavelength lasing of InGaN/GaN axial-heterostructure nanorod lasers.
    Chun SY; Yoo GY; Jeong S; Park SM; Eo YJ; Kim W; Do YR; Song JK
    Nanoscale; 2019 Aug; 11(30):14186-14193. PubMed ID: 31267116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overcoming Auger recombination in nanocrystal quantum dot laser using spontaneous emission enhancement.
    Gupta S; Waks E
    Opt Express; 2014 Feb; 22(3):3013-27. PubMed ID: 24663592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lasing characteristics of InAs quantum dot microcavity lasers as a function of temperature and wavelength.
    Yang T; Mock A; O'Brien JD; Lipson S; Deppe DG
    Opt Express; 2007 Jun; 15(12):7281-9. PubMed ID: 19547051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Switching of Photonic Crystal Lasers by Graphene.
    Hwang MS; Kim HR; Kim KH; Jeong KY; Park JS; Choi JH; Kang JH; Lee JM; Park WI; Song JH; Seo MK; Park HG
    Nano Lett; 2017 Mar; 17(3):1892-1898. PubMed ID: 28165745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers.
    Qian F; Li Y; Gradecak S; Park HG; Dong Y; Ding Y; Wang ZL; Lieber CM
    Nat Mater; 2008 Sep; 7(9):701-6. PubMed ID: 18711385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers.
    Zhang Q; Ha ST; Liu X; Sum TC; Xiong Q
    Nano Lett; 2014 Oct; 14(10):5995-6001. PubMed ID: 25118830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.