BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29422502)

  • 1. Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae.
    Lane S; Xu H; Oh EJ; Kim H; Lesmana A; Jeong D; Zhang G; Tsai CS; Jin YS; Kim SR
    Sci Rep; 2018 Feb; 8(1):2613. PubMed ID: 29422502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2.
    Hohmann S; Winderickx J; de Winde JH; Valckx D; Cobbaert P; Luyten K; de Meirsman C; Ramos J; Thevelein JM
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Xylose Metabolism by a
    Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption.
    Reznicek O; Facey SJ; de Waal PP; Teunissen AW; de Bont JA; Nijland JG; Driessen AJ; Hauer B
    J Appl Microbiol; 2015 Jul; 119(1):99-111. PubMed ID: 25882005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain.
    Nijland JG; Shin HY; Dore E; Rudinatha D; de Waal PP; Driessen AJM
    FEMS Yeast Res; 2021 Jan; 21(1):. PubMed ID: 33232441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic consequences of TDA1 deficiency in Saccharomyces cerevisiae: Protein kinase Tda1 is essential for Hxk1 and Hxk2 serine 15 phosphorylation.
    Müller H; Lesur A; Dittmar G; Gentzel M; Kettner K
    Sci Rep; 2022 Oct; 12(1):18084. PubMed ID: 36302925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae.
    Rodríguez A; De La Cera T; Herrero P; Moreno F
    Biochem J; 2001 May; 355(Pt 3):625-31. PubMed ID: 11311123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake.
    Verhoeven MD; Bracher JM; Nijland JG; Bouwknegt J; Daran JG; Driessen AJM; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29860442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of xylose uptake in 2-deoxyglucose tolerant mutant of Saccharomyces cerevisiae.
    Kahar P; Taku K; Tanaka S
    J Biosci Bioeng; 2011 May; 111(5):557-63. PubMed ID: 21257343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient, D-glucose insensitive, growth on D-xylose by an evolutionary engineered Saccharomyces cerevisiae strain.
    Nijland JG; Li X; Shin HY; de Waal PP; Driessen AJM
    FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31782779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae.
    Shen Y; Hou J; Bao X
    Bioengineered; 2013; 4(6):435-7. PubMed ID: 23812433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae.
    Moreno F; Herrero P
    FEMS Microbiol Rev; 2002 Mar; 26(1):83-90. PubMed ID: 12007644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways.
    Belinchón MM; Gancedo JM
    FEMS Yeast Res; 2007 Sep; 7(6):808-18. PubMed ID: 17428308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae gene YMR291W/TDA1 mediates the in vivo phosphorylation of hexokinase isoenzyme 2 at serine-15.
    Kettner K; Krause U; Mosler S; Bodenstein C; Kriegel TM; Rödel G
    FEBS Lett; 2012 Feb; 586(4):455-8. PubMed ID: 22289182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.
    Sato TK; Tremaine M; Parreiras LS; Hebert AS; Myers KS; Higbee AJ; Sardi M; McIlwain SJ; Ong IM; Breuer RJ; Avanasi Narasimhan R; McGee MA; Dickinson Q; La Reau A; Xie D; Tian M; Reed JL; Zhang Y; Coon JJ; Hittinger CT; Gasch AP; Landick R
    PLoS Genet; 2016 Oct; 12(10):e1006372. PubMed ID: 27741250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharomyces cerevisiae null mutants in glucose phosphorylation: metabolism and invertase expression.
    Walsh RB; Clifton D; Horak J; Fraenkel DG
    Genetics; 1991 Jul; 128(3):521-7. PubMed ID: 1874414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae.
    Reider Apel A; Ouellet M; Szmidt-Middleton H; Keasling JD; Mukhopadhyay A
    Sci Rep; 2016 Jan; 6():19512. PubMed ID: 26781725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.