These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29422526)

  • 21. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VING: a software for visualization of deep sequencing signals.
    Descrimes M; Ben Zouari Y; Wery M; Legendre R; Gautheret D; Morillon A
    BMC Res Notes; 2015 Sep; 8():419. PubMed ID: 26346985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyses of Nuclear Reads Obtained Using Genome Skimming.
    Mirarab S; Bafna V
    Methods Mol Biol; 2024; 2744():247-265. PubMed ID: 38683324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study.
    Cerdeira LT; Carneiro AR; Ramos RT; de Almeida SS; D'Afonseca V; Schneider MP; Baumbach J; Tauch A; McCulloch JA; Azevedo VA; Silva A
    J Microbiol Methods; 2011 Aug; 86(2):218-23. PubMed ID: 21620904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.
    Huson DH; Tappu R; Bazinet AL; Xie C; Cummings MP; Nieselt K; Williams R
    Microbiome; 2017 Jan; 5(1):11. PubMed ID: 28122610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid evaluation and quality control of next generation sequencing data with FaQCs.
    Lo CC; Chain PS
    BMC Bioinformatics; 2014 Nov; 15(1):366. PubMed ID: 25408143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hamming-shifting graph of genomic short reads: Efficient construction and its application for compression.
    Liu Y; Li J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009229. PubMed ID: 34280186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TAG Sequence Identification of Genomic Regions Using TAGdb.
    Ruperao P
    Methods Mol Biol; 2016; 1374():233-40. PubMed ID: 26519409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compression of next-generation sequencing reads aided by highly efficient de novo assembly.
    Jones DC; Ruzzo WL; Peng X; Katze MG
    Nucleic Acids Res; 2012 Dec; 40(22):e171. PubMed ID: 22904078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative study of k-spectrum-based error correction methods for next-generation sequencing data analysis.
    Akogwu I; Wang N; Zhang C; Gong P
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):20. PubMed ID: 27461106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short Read Alignment Using SOAP2.
    Hurgobin B
    Methods Mol Biol; 2016; 1374():241-52. PubMed ID: 26519410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De novo construction of a "Gene-space" for diploid plant genome rich in repetitive sequences by an iterative Process of Extraction and Assembly of NGS reads (iPEA protocol) with limited computing resources.
    Aluome C; Aubert G; Alves Carvalho S; Le Paslier MC; Burstin J; Brunel D
    BMC Res Notes; 2016 Feb; 9():81. PubMed ID: 26864345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TranSurVeyor: an improved database-free algorithm for finding non-reference transpositions in high-throughput sequencing data.
    Rajaby R; Sung WK
    Nucleic Acids Res; 2018 Nov; 46(20):e122. PubMed ID: 30137425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in high throughput DNA sequence data compression.
    Sardaraz M; Tahir M; Ikram AA
    J Bioinform Comput Biol; 2016 Jun; 14(3):1630002. PubMed ID: 26846812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome.
    Sakai H; Naito K; Ogiso-Tanaka E; Takahashi Y; Iseki K; Muto C; Satou K; Teruya K; Shiroma A; Shimoji M; Hirano T; Itoh T; Kaga A; Tomooka N
    Sci Rep; 2015 Nov; 5():16780. PubMed ID: 26616024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MetaCRAM: an integrated pipeline for metagenomic taxonomy identification and compression.
    Kim M; Zhang X; Ligo JG; Farnoud F; Veeravalli VV; Milenkovic O
    BMC Bioinformatics; 2016 Feb; 17():94. PubMed ID: 26895947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From sequence mapping to genome assemblies.
    Otto TD
    Methods Mol Biol; 2015; 1201():19-50. PubMed ID: 25388106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ISEA: Iterative Seed-Extension Algorithm for De Novo Assembly Using Paired-End Information and Insert Size Distribution.
    Li M; Liao Z; He Y; Wang J; Luo J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):916-925. PubMed ID: 27076460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Operating on Genomic Ranges Using BEDOPS.
    Neph S; Reynolds AP; Kuehn MS; Stamatoyannopoulos JA
    Methods Mol Biol; 2016; 1418():267-81. PubMed ID: 27008020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.