These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Small molecule-facilitated anion transporters in cells for a novel therapeutic approach to cystic fibrosis. Fiore M; Cossu C; Capurro V; Picco C; Ludovico A; Mielczarek M; Carreira-Barral I; Caci E; Baroni D; Quesada R; Moran O Br J Pharmacol; 2019 Jun; 176(11):1764-1779. PubMed ID: 30825185 [TBL] [Abstract][Full Text] [Related]
3. Small Molecule Anion Carriers Correct Abnormal Airway Surface Liquid Properties in Cystic Fibrosis Airway Epithelia. Gianotti A; Capurro V; Delpiano L; Mielczarek M; García-Valverde M; Carreira-Barral I; Ludovico A; Fiore M; Baroni D; Moran O; Quesada R; Caci E Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098269 [TBL] [Abstract][Full Text] [Related]
4. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia. Li H; Valkenier H; Judd LW; Brotherhood PR; Hussain S; Cooper JA; Jurček O; Sparkes HA; Sheppard DN; Davis AP Nat Chem; 2016 Jan; 8(1):24-32. PubMed ID: 26673261 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular Transmembrane Anion Transport: New Assays and Insights. Wu X; Howe ENW; Gale PA Acc Chem Res; 2018 Aug; 51(8):1870-1879. PubMed ID: 30063324 [TBL] [Abstract][Full Text] [Related]
6. Anion-Transport Mechanism of a Triazole-Bearing Derivative of Prodigiosine: A Candidate for Cystic Fibrosis Therapy. Cossu C; Fiore M; Baroni D; Capurro V; Caci E; Garcia-Valverde M; Quesada R; Moran O Front Pharmacol; 2018; 9():852. PubMed ID: 30131695 [TBL] [Abstract][Full Text] [Related]
7. The different anion transport capability of prodiginine- and tambjamine-like molecules. Fiore M; García-Valverde M; Carreira-Barral I; Moran O Eur J Pharmacol; 2020 Dec; 889():173592. PubMed ID: 32979354 [TBL] [Abstract][Full Text] [Related]
8. Synthetic prodiginine obatoclax (GX15-070) and related analogues: anion binding, transmembrane transport, and cytotoxicity properties. Díaz de Greñu B; Iglesias Hernández P; Espona M; Quiñonero D; Light ME; Torroba T; Pérez-Tomás R; Quesada R Chemistry; 2011 Dec; 17(50):14074-83. PubMed ID: 22069220 [TBL] [Abstract][Full Text] [Related]
9. CFTR: what's it like inside the pore? Liu X; Smith SS; Dawson DC J Exp Zool A Comp Exp Biol; 2003 Nov; 300(1):69-75. PubMed ID: 14598388 [TBL] [Abstract][Full Text] [Related]
10. Therapeutic approaches to CFTR dysfunction: From discovery to drug development. Li H; Pesce E; Sheppard DN; Singh AK; Pedemonte N J Cyst Fibros; 2018 Mar; 17(2S):S14-S21. PubMed ID: 28916430 [TBL] [Abstract][Full Text] [Related]
11. Anion conductance selectivity mechanism of the CFTR chloride channel. Linsdell P Biochim Biophys Acta; 2016 Apr; 1858(4):740-7. PubMed ID: 26779604 [TBL] [Abstract][Full Text] [Related]
12. Diphenylethylenediamine-Based Potent Anionophores: Transmembrane Chloride Ion Transport and Apoptosis Inducing Activities. Akhtar N; Saha A; Kumar V; Pradhan N; Panda S; Morla S; Kumar S; Manna D ACS Appl Mater Interfaces; 2018 Oct; 10(40):33803-33813. PubMed ID: 30221925 [TBL] [Abstract][Full Text] [Related]
13. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. Linsdell P J Physiol; 2001 Feb; 531(Pt 1):51-66. PubMed ID: 11179391 [TBL] [Abstract][Full Text] [Related]
14. Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability. Clancy JP; Hong JS; Bebök Z; King SA; Demolombe S; Bedwell DM; Sorscher EJ Biochemistry; 1998 Oct; 37(43):15222-30. PubMed ID: 9790686 [TBL] [Abstract][Full Text] [Related]
15. Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore. Linsdell P Adv Exp Med Biol; 2017; 925():13-32. PubMed ID: 27311317 [TBL] [Abstract][Full Text] [Related]
16. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport. Li H; Salomon JJ; Sheppard DN; Mall MA; Galietta LJ Curr Opin Pharmacol; 2017 Jun; 34():91-97. PubMed ID: 29065356 [TBL] [Abstract][Full Text] [Related]
17. Effect of cytosolic pH on epithelial Na+ channel in normal and cystic fibrosis sweat ducts. Reddy MM; Wang XF; Quinton PM J Membr Biol; 2008; 225(1-3):1-11. PubMed ID: 18937003 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of direct bicarbonate transport by the CFTR anion channel. Tang L; Fatehi M; Linsdell P J Cyst Fibros; 2009 Mar; 8(2):115-21. PubMed ID: 19019741 [TBL] [Abstract][Full Text] [Related]
19. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore. Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562 [TBL] [Abstract][Full Text] [Related]
20. Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance. El Khouri E; Touré A Int J Biochem Cell Biol; 2014 Jul; 52():58-67. PubMed ID: 24530837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]