These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29422941)

  • 1. Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.
    Kim JZ; Soffer JM; Kahn AE; Vettel JM; Pasqualetti F; Bassett DS
    Nat Phys; 2018; 14():91-98. PubMed ID: 29422941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cliques and cavities in the human connectome.
    Sizemore AE; Giusti C; Kahn A; Vettel JM; Betzel RF; Bassett DS
    J Comput Neurosci; 2018 Feb; 44(1):115-145. PubMed ID: 29143250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Path-dependent connectivity, not modularity, consistently predicts controllability of structural brain networks.
    Patankar SP; Kim JZ; Pasqualetti F; Bassett DS
    Netw Neurosci; 2020; 4(4):1091-1121. PubMed ID: 33195950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillation suppression and chimera states in time-varying networks.
    Majhi S; Rakshit S; Ghosh D
    Chaos; 2022 Apr; 32(4):042101. PubMed ID: 35489845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.
    Meyer-Bäse A; Roberts RG; Illan IA; Meyer-Bäse U; Lobbes M; Stadlbauer A; Pinker-Domenig K
    Front Comput Neurosci; 2017; 11():87. PubMed ID: 29051730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The global dynamical complexity of the human brain network.
    Arsiwalla XD; Verschure PFMJ
    Appl Netw Sci; 2016; 1(1):16. PubMed ID: 30533508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring connectivity in networked dynamical systems: Challenges using Granger causality.
    Lusch B; Maia PD; Kutz JN
    Phys Rev E; 2016 Sep; 94(3-1):032220. PubMed ID: 27739857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A topology-dynamics-based control strategy for multi-dimensional complex networked dynamical systems.
    Bahadorian M; Alimohammadi H; Mozaffari T; Tabar MRR; Peinke J; Lehnertz K
    Sci Rep; 2019 Dec; 9(1):19831. PubMed ID: 31882634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring the physical connectivity of complex networks from their functional dynamics.
    Ta HX; Yoon CN; Holm L; Han SK
    BMC Syst Biol; 2010 May; 4():70. PubMed ID: 20500902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks.
    Li H; Liao X; Chen G; Hill DJ; Dong Z; Huang T
    Neural Netw; 2015 Jun; 66():1-10. PubMed ID: 25768889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural balance analysis of complex dynamical networks based on nodes' dynamical couplings.
    Gao Z; Wang Y
    PLoS One; 2018; 13(1):e0191941. PubMed ID: 29385183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear network dynamics under perturbations of the underlying graph.
    Rǎdulescu A; Verduzco-Flores S
    Chaos; 2015 Jan; 25(1):013116. PubMed ID: 25637927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns.
    Wickramasinghe M; Kiss IZ
    PLoS One; 2013; 8(11):e80586. PubMed ID: 24260429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connectomic consistency: a systematic stability analysis of structural and functional connectivity.
    Osmanlıoğlu Y; Alappatt JA; Parker D; Verma R
    J Neural Eng; 2020 Jul; 17(4):045004. PubMed ID: 32428883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the impact of structural directionality: How reliable are undirected connectomes?
    Kale P; Zalesky A; Gollo LL
    Netw Neurosci; 2018; 2(2):259-284. PubMed ID: 30234180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small Worldness in Dense and Weighted Connectomes.
    Colon-Perez LM; Couret M; Triplett W; Price CC; Mareci TH
    Front Phys; 2016 May; 4():. PubMed ID: 27478822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The minimum spanning tree: an unbiased method for brain network analysis.
    Tewarie P; van Dellen E; Hillebrand A; Stam CJ
    Neuroimage; 2015 Jan; 104():177-88. PubMed ID: 25451472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning models of cognitive processes constrained by human brain connectomes.
    Zhang Y; Farrugia N; Bellec P
    Med Image Anal; 2022 Aug; 80():102507. PubMed ID: 35738052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.