These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29423453)

  • 1. Recognizing Whispered Speech Produced by an Individual with Surgically Reconstructed Larynx Using Articulatory Movement Data.
    Cao B; Kim M; Mau T; Wang J
    Workshop Speech Lang Process Assist Technol; 2016 Sep; 2016():80-86. PubMed ID: 29423453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of articulatory movements during neutral speech from those during whispered speech.
    G NM; Ghosh PK
    J Acoust Soc Am; 2018 Jun; 143(6):3352. PubMed ID: 29960421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics of Loud, Soft, and Whispered Speech.
    Dromey C; Peacock M
    Folia Phoniatr Logop; 2024 Feb; ():. PubMed ID: 38359809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT.
    Toledano DT; Fernández-Gallego MP; Lozano-Diez A
    PLoS One; 2018; 13(10):e0205355. PubMed ID: 30304055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lip kinematics for /p/ and /b/ production during whispered and voiced speech.
    Higashikawa M; Green JR; Moore CA; Minifie FD
    Folia Phoniatr Logop; 2003; 55(1):17-27. PubMed ID: 12566763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Articulatory representation and speech technology.
    Schmidbauer O; Casacuberta F; Castro MJ; Hegerl G; Höge H; Sanchez JA; Zlokarnik I
    Lang Speech; 1993; 36 ( Pt 2-3)():331-51. PubMed ID: 8277813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis.
    McGowan RS; Cushing S
    J Acoust Soc Am; 1999 Aug; 106(2):1090-105. PubMed ID: 10462814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Acoustic Models in TORGO Dysarthric Speech Database.
    Joy NM; Umesh S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):637-645. PubMed ID: 29522408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histogram equalization with Bayesian estimation for noise robust speech recognition.
    Suh Y; Kim H
    J Acoust Soc Am; 2018 Feb; 143(2):677. PubMed ID: 29495754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.
    Darch J; Milner B; Vaseghi S
    J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Articulatory and Vocal Fold Movement Patterns During Loud Speech in Children With Cerebral Palsy.
    Nip ISB
    J Speech Lang Hear Res; 2024 Feb; 67(2):477-493. PubMed ID: 38227476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speaker-Independent Silent Speech Recognition from Flesh-Point Articulatory Movements Using an LSTM Neural Network.
    Kim M; Cao B; Mau T; Wang J
    IEEE/ACM Trans Audio Speech Lang Process; 2017 Dec; 25(12):2323-2336. PubMed ID: 30271809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic landmarks contain more information about the phone string than other frames for automatic speech recognition with deep neural network acoustic model.
    He D; Lim BP; Yang X; Hasegawa-Johnson M; Chen D
    J Acoust Soc Am; 2018 Jun; 143(6):3207. PubMed ID: 29960420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acquisition of vowel articulation in childhood investigated by acoustic-to-articulatory inversion.
    Oohashi H; Watanabe H; Taga G
    Infant Behav Dev; 2017 Feb; 46():178-193. PubMed ID: 28222332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical modeling of speech Poincaré sections in combination of frequency analysis to improve speech recognition performance.
    Jafari A; Almasganj F; Bidhendi MN
    Chaos; 2010 Sep; 20(3):033106. PubMed ID: 20887046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acoustical significance of tongue, lip, and larynx maneuvers in rounded palatal vowels.
    Wood S
    J Acoust Soc Am; 1986 Aug; 80(2):391-401. PubMed ID: 3745671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bio-inspired feature extraction for robust speech recognition.
    Zouhir Y; Ouni K
    Springerplus; 2014; 3():651. PubMed ID: 25485194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Dysarthria Severity Classification: A Study on Acoustic Features and Deep Learning Techniques.
    Joshy AA; Rajan R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1147-1157. PubMed ID: 35452390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Articulatory Range of Movement in Individuals With Dysarthria Secondary to Amyotrophic Lateral Sclerosis.
    Lee J; Bell M
    Am J Speech Lang Pathol; 2018 Aug; 27(3):996-1009. PubMed ID: 29800071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on Pig Sound Recognition Based on Deep Neural Network and Hidden Markov Models.
    Pan W; Li H; Zhou X; Jiao J; Zhu C; Zhang Q
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.