BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 29423464)

  • 1. Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing.
    Moon HS; Je K; Min JW; Park D; Han KY; Shin SH; Park WY; Yoo CE; Kim SH
    Lab Chip; 2018 Feb; 18(5):775-784. PubMed ID: 29423464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dean Flow Assisted Single Cell and Bead Encapsulation for High Performance Single Cell Expression Profiling.
    Li L; Wu P; Luo Z; Wang L; Ding W; Wu T; Chen J; He J; He Y; Wang H; Chen Y; Li G; Li Z; He L
    ACS Sens; 2019 May; 4(5):1299-1305. PubMed ID: 31046240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell barcoding and sequencing using droplet microfluidics.
    Zilionis R; Nainys J; Veres A; Savova V; Zemmour D; Klein AM; Mazutis L
    Nat Protoc; 2017 Jan; 12(1):44-73. PubMed ID: 27929523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exceeding 80% Efficiency of Single-Bead Encapsulation in Microdroplets through Hydrogel Coating-Assisted Close-Packed Ordering.
    Chen L; Zhao Y; Li J; Xiong C; Xu Y; Tang C; Zhang R; Zhang J; Mi X; Liu Y
    Anal Chem; 2023 Jun; 95(23):8889-8897. PubMed ID: 37233805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Cell RNA Sequencing with Drop-Seq.
    Bageritz J; Raddi G
    Methods Mol Biol; 2019; 1979():73-85. PubMed ID: 31028633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrated Dielectrophoresis-Trapping and Nanowell Transfer Approach to Enable Double-Sub-Poisson Single-Cell RNA Sequencing.
    Bai Z; Deng Y; Kim D; Chen Z; Xiao Y; Fan R
    ACS Nano; 2020 Jun; 14(6):7412-7424. PubMed ID: 32437127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments.
    Petukhov V; Guo J; Baryawno N; Severe N; Scadden DT; Samsonova MG; Kharchenko PV
    Genome Biol; 2018 Jun; 19(1):78. PubMed ID: 29921301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.
    Zhang X; Li T; Liu F; Chen Y; Yao J; Li Z; Huang Y; Wang J
    Mol Cell; 2019 Jan; 73(1):130-142.e5. PubMed ID: 30472192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting.
    Wu L; Chen P; Dong Y; Feng X; Liu BF
    Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified Drop-seq workflow with minimized bead loss using a bead capture and processing microfluidic chip.
    Biočanin M; Bues J; Dainese R; Amstad E; Deplancke B
    Lab Chip; 2019 Apr; 19(9):1610-1620. PubMed ID: 30920557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolvable Polyacrylamide Beads for High-Throughput Droplet DNA Barcoding.
    Wang Y; Cao T; Ko J; Shen Y; Zong W; Sheng K; Cao W; Sun S; Cai L; Zhou YL; Zhang XX; Zong C; Weissleder R; Weitz D
    Adv Sci (Weinh); 2020 Apr; 7(8):1903463. PubMed ID: 32328429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations.
    Shin D; Lee W; Lee JH; Bang D
    Sci Adv; 2019 May; 5(5):eaav2249. PubMed ID: 31106268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM; Kemna EW; Wolbers F; van den Berg A
    Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers.
    Zhang M; Zou Y; Xu X; Zhang X; Gao M; Song J; Huang P; Chen Q; Zhu Z; Lin W; Zare RN; Yang C
    Nat Commun; 2020 Apr; 11(1):2118. PubMed ID: 32355211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.
    Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J
    Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput.
    Gierahn TM; Wadsworth MH; Hughes TK; Bryson BD; Butler A; Satija R; Fortune S; Love JC; Shalek AK
    Nat Methods; 2017 Apr; 14(4):395-398. PubMed ID: 28192419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet microfluidics--a tool for single-cell analysis.
    Joensson HN; Andersson Svahn H
    Angew Chem Int Ed Engl; 2012 Dec; 51(49):12176-92. PubMed ID: 23180509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.