BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 29423493)

  • 1. A 3D neutral chalcogenide framework built from a supertetrahedral T3 cluster and a metal complex for the electrocatalytic oxygen reduction reaction.
    Zhang Y; Hu D; Xue C; Yang H; Wang X; Wu T
    Dalton Trans; 2018 Mar; 47(10):3227-3230. PubMed ID: 29423493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Unusual Metal Chalcogenide Zeolitic Framework Built from the Extended Spiro-5 Units with Supertetrahedral Clusters as Nodes.
    Wang W; Wang X; Hu D; Yang H; Xue C; Lin Z; Wu T
    Inorg Chem; 2018 Feb; 57(3):921-925. PubMed ID: 29308887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mn2Ga4Sn4S20](8-) T3 supertetrahedral nanocluster directed by a series of transition metal complexes.
    Yue CY; Lei XW; Feng LJ; Wang C; Gong YP; Liu XY
    Dalton Trans; 2015 Feb; 44(5):2416-24. PubMed ID: 25553814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two Penta-Supertetrahedral Cluster-Based Chalcogenide Open Frameworks: Effect of the Cluster Spatial Connectivity on the Electron-Transport Efficiency.
    Lv J; Zhang J; Xue C; Hu D; Wang X; Li DS; Wu T
    Inorg Chem; 2019 Mar; 58(6):3582-3585. PubMed ID: 30793596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Chalcogenide Imidazolate Frameworks with Hybrid Intercluster Bridging Mode and Unique Interrupted Topological Structure.
    Zhang J; Wang W; Xue C; Zhao M; Hu D; Lv J; Wang X; Li D; Wu T
    Inorg Chem; 2018 Aug; 57(16):9790-9793. PubMed ID: 30074779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pushing up the size limit of chalcogenide supertetrahedral clusters: two- and three-dimensional photoluminescent open frameworks from (Cu(5)In(30)S(54))(13-) clusters.
    Bu X; Zheng N; Li Y; Feng P
    J Am Chem Soc; 2002 Oct; 124(43):12646-7. PubMed ID: 12392396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Superlattices Based on Unusual Chalcogenide Supertetrahedral In-Sn-S Nanoclusters.
    Wang W; Wang X; Zhang J; Yang H; Luo M; Xue C; Lin Z; Wu T
    Inorg Chem; 2019 Jan; 58(1):31-34. PubMed ID: 30550271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three new metal chalcogenide open frameworks built through co-assembly and/or hybrid assembly from supertetrahedral T5-InOS and T3-InS nanoclusters.
    Zhang J; Liu X; Ding Y; Xue C; Wu T
    Dalton Trans; 2019 Jun; 48(22):7537-7540. PubMed ID: 31066399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large indium sulfide supertetrahedral cluster built from integration of ZnS-like tetrahedral shell with NaCl-like octahedral core.
    Wu T; Zuo F; Wang L; Bu X; Zheng ST; Ma R; Feng P
    J Am Chem Soc; 2011 Oct; 133(40):15886-9. PubMed ID: 21923195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable 3D neutral gallium thioantimonate frameworks decorated with transition metal complexes for a tunable photocatalytic hydrogen evolution.
    Li J; Liu C; Wang X; Ding Y; Wu Z; Sun P; Tang J; Zhang J; Li DS; Chen N; Wu T
    Dalton Trans; 2022 Jan; 51(3):978-985. PubMed ID: 34931651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superbase route to supertetrahedral chalcogenide clusters.
    Wu T; Bu X; Liao P; Wang L; Zheng ST; Ma R; Feng P
    J Am Chem Soc; 2012 Feb; 134(8):3619-22. PubMed ID: 22335388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quasi-
    Sun L; Zhang HY; Zhang J; Jia YJ; Yu YZ; Hou JJ; Wang YX; Zhang XM
    Dalton Trans; 2020 Oct; 49(40):13958-13961. PubMed ID: 33021307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pushing up the Size Limit of Metal Chalcogenide Supertetrahedral Nanocluster.
    Xu X; Wang W; Liu D; Hu D; Wu T; Bu X; Feng P
    J Am Chem Soc; 2018 Jan; 140(3):888-891. PubMed ID: 29337544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A crown-like heterometallic unit as the building block for a 3D In-Ge-S framework.
    Han X; Wang Z; Xu J; Liu D; Wang C
    Dalton Trans; 2015 Dec; 44(46):19768-71. PubMed ID: 26515075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Largest molecular clusters in the supertetrahedral Tn series.
    Wu T; Wang L; Bu X; Chau V; Feng P
    J Am Chem Soc; 2010 Aug; 132(31):10823-31. PubMed ID: 20681716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly open chalcogenide frameworks built from unusual defective supertetrahedral clusters.
    Xue C; Zhang L; Wang X; Wang X; Zhang J; Wu T
    Dalton Trans; 2019 Aug; 48(29):10799-10803. PubMed ID: 31263815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triangular trinuclear metal-N4 complexes with high electrocatalytic activity for oxygen reduction.
    Liu R; von Malotki C; Arnold L; Koshino N; Higashimura H; Baumgarten M; Müllen K
    J Am Chem Soc; 2011 Jul; 133(27):10372-5. PubMed ID: 21671653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unique non-interpenetrated open-framework chalcogenide with a large cavity.
    Luo M; Yang H; Wang W; Xue C; Wu T
    Dalton Trans; 2017 Dec; 47(1):49-52. PubMed ID: 29182176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocluster with one missing core atom: a three-dimensional hybrid superlattice built from dual-sized supertetrahedral clusters.
    Wang C; Bu X; Zheng N; Feng P
    J Am Chem Soc; 2002 Sep; 124(35):10268-9. PubMed ID: 12197715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster Organic Frameworks Constructed from Heterometallic Supertetrahedral Cluster Secondary Building Units.
    Lin LD; Li XX; Qi YJ; Ma X; Zheng ST
    Inorg Chem; 2017 Apr; 56(8):4636-4643. PubMed ID: 28345883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.