These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 29423562)
1. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Yaseen Y; Diop A; Gancel F; Béchet M; Jacques P; Drider D Arch Microbiol; 2018 Jul; 200(5):783-791. PubMed ID: 29423562 [TBL] [Abstract][Full Text] [Related]
2. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Vahidinasab M; Lilge L; Reinfurt A; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R Microb Cell Fact; 2020 Nov; 19(1):205. PubMed ID: 33167976 [TBL] [Abstract][Full Text] [Related]
3. Influence of promoters on the production of fengycin in Bacillus spp. Yaseen Y; Gancel F; Drider D; Béchet M; Jacques P Res Microbiol; 2016 May; 167(4):272-281. PubMed ID: 26912322 [TBL] [Abstract][Full Text] [Related]
4. DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Wang P; Guo Q; Ma Y; Li S; Lu X; Zhang X; Ma P Microbiol Res; 2015 Sep; 178():42-50. PubMed ID: 26302846 [TBL] [Abstract][Full Text] [Related]
5. Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Luttinger A; Hahn J; Dubnau D Mol Microbiol; 1996 Jan; 19(2):343-56. PubMed ID: 8825779 [TBL] [Abstract][Full Text] [Related]
6. Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production. Yaseen Y; Gancel F; Béchet M; Drider D; Jacques P Arch Microbiol; 2017 Dec; 199(10):1371-1382. PubMed ID: 28735377 [TBL] [Abstract][Full Text] [Related]
7. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Fan H; Ru J; Zhang Y; Wang Q; Li Y Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713 [TBL] [Abstract][Full Text] [Related]
8. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Tapi A; Chollet-Imbert M; Scherens B; Jacques P Appl Microbiol Biotechnol; 2010 Feb; 85(5):1521-31. PubMed ID: 19730852 [TBL] [Abstract][Full Text] [Related]
9. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Zhang L; Sun C Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550 [TBL] [Abstract][Full Text] [Related]
10. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. Lilge L; Vahidinasab M; Adiek I; Becker P; Kuppusamy Nesamani C; Treinen C; Hoffmann M; Morabbi Heravi K; Henkel M; Hausmann R Microbiologyopen; 2021 Oct; 10(5):e1241. PubMed ID: 34713601 [TBL] [Abstract][Full Text] [Related]
11. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Luo C; Liu X; Zhou H; Wang X; Chen Z Appl Environ Microbiol; 2015 Jan; 81(1):422-31. PubMed ID: 25362061 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Steller S; Vollenbroich D; Leenders F; Stein T; Conrad B; Hofemeister J; Jacques P; Thonart P; Vater J Chem Biol; 1999 Jan; 6(1):31-41. PubMed ID: 9889147 [TBL] [Abstract][Full Text] [Related]
13. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Farace G; Fernandez O; Jacquens L; Coutte F; Krier F; Jacques P; Clément C; Barka EA; Jacquard C; Dorey S Mol Plant Pathol; 2015 Feb; 16(2):177-87. PubMed ID: 25040001 [TBL] [Abstract][Full Text] [Related]
14. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Zeriouh H; de Vicente A; Pérez-García A; Romero D Environ Microbiol; 2014 Jul; 16(7):2196-211. PubMed ID: 24308294 [TBL] [Abstract][Full Text] [Related]
15. ESI LC-MS and MS/MS characterization of antifungal cyclic lipopeptides produced by Bacillus subtilis XF-1. Li XY; Mao ZC; Wang YH; Wu YX; He YQ; Long CL J Mol Microbiol Biotechnol; 2012; 22(2):83-93. PubMed ID: 22614917 [TBL] [Abstract][Full Text] [Related]
16. Improved Production of Fengycin in Gao GR; Hou ZJ; Ding MZ; Bai S; Wei SY; Qiao B; Xu QM; Cheng JS; Yuan YJ ACS Synth Biol; 2022 Dec; 11(12):4065-4076. PubMed ID: 36379006 [TBL] [Abstract][Full Text] [Related]
17. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Touré Y; Ongena M; Jacques P; Guiro A; Thonart P J Appl Microbiol; 2004; 96(5):1151-60. PubMed ID: 15078533 [TBL] [Abstract][Full Text] [Related]
18. Screening of a Bacillus subtilis Strain Producing Multiple Types of Cyclic Lipopeptides and Evaluation of Their Surface-tension-lowering Activities. Habe H; Taira T; Imura T J Oleo Sci; 2017; 66(7):785-790. PubMed ID: 28674328 [TBL] [Abstract][Full Text] [Related]
19. Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2. Su Z; Chen X; Liu X; Guo Q; Li S; Lu X; Zhang X; Wang P; Dong L; Zhao W; Ma P BMC Genomics; 2020 Nov; 21(1):767. PubMed ID: 33153447 [TBL] [Abstract][Full Text] [Related]
20. Influence of B. subtilis 3NA mutations in spo0A and abrB on surfactin production in B. subtilis 168. Klausmann P; Lilge L; Aschern M; Hennemann K; Henkel M; Hausmann R; Morabbi Heravi K Microb Cell Fact; 2021 Sep; 20(1):188. PubMed ID: 34565366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]