These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Improving the therapeutic index of CpG oligodeoxynucleotides by intralymphatic administration. von Beust BR; Johansen P; Smith KA; Bot A; Storni T; Kündig TM Eur J Immunol; 2005 Jun; 35(6):1869-76. PubMed ID: 15909311 [TBL] [Abstract][Full Text] [Related]
23. Leucine-rich repeat 11 of Toll-like receptor 9 can tightly bind to CpG-containing oligodeoxynucleotides, and the positively charged residues are critical for the high affinity. Pan X; Yue J; Ding G; Li B; Liu X; Zheng X; Yu M; Li J; Jiang W; Wu C; Zheng J; Zhou H J Biol Chem; 2012 Aug; 287(36):30596-609. PubMed ID: 22822061 [TBL] [Abstract][Full Text] [Related]
24. Cross-talk between toll-like receptors 5 and 9 on activation of human immune responses. Merlo A; Calcaterra C; Mènard S; Balsari A J Leukoc Biol; 2007 Sep; 82(3):509-18. PubMed ID: 17586660 [TBL] [Abstract][Full Text] [Related]
25. CpG-ODN but not other TLR-ligands restore the antitumor responses in old mice: the implications for vaccinations in the aged. Sharma S; Dominguez AL; Hoelzinger DB; Lustgarten J Cancer Immunol Immunother; 2008 Apr; 57(4):549-61. PubMed ID: 17828396 [TBL] [Abstract][Full Text] [Related]
26. Impact of modifications of heterocyclic bases in CpG dinucleotides on their immune-modulatory activity. Vollmer J; Weeratna RD; Jurk M; Davis HL; Schetter C; Wüllner M; Wader T; Liu M; Kritzler A; Krieg AM J Leukoc Biol; 2004 Sep; 76(3):585-93. PubMed ID: 15218053 [TBL] [Abstract][Full Text] [Related]
27. Therapeutic applications and mechanisms underlying the activity of immunosuppressive oligonucleotides. Klinman DM; Tross D; Klaschik S; Shirota H; Sato T Ann N Y Acad Sci; 2009 Sep; 1175():80-8. PubMed ID: 19796080 [TBL] [Abstract][Full Text] [Related]
28. Lymph Node-Targeting Nanovaccine through Antigen-CpG Self-Assembly Potentiates Cytotoxic T Cell Activation. Xi X; Zhang L; Lu G; Gao X; Wei W; Ma G J Immunol Res; 2018; 2018():3714960. PubMed ID: 30018987 [TBL] [Abstract][Full Text] [Related]
29. Enhanced Therapeutic Efficacy of Immunostimulatory CpG-ODN by Silencing SOCS-1 with Polysaccharide/miR-155 Complexes. Sumiya K; Izumi H; Sakurai K ACS Appl Bio Mater; 2023 Feb; 6(2):774-783. PubMed ID: 36632777 [TBL] [Abstract][Full Text] [Related]
30. Induction of a balanced Th1/Th2 immune responses by co-delivery of PLGA/ovalbumin nanospheres and CpG ODNs/PEI-SWCNT nanoparticles as TLR9 agonist in BALB/c mice. Ebrahimian M; Hashemi M; Maleki M; Abnous K; Hashemitabar G; Ramezani M; Haghparast A Int J Pharm; 2016 Dec; 515(1-2):708-720. PubMed ID: 27989827 [TBL] [Abstract][Full Text] [Related]
31. Two distinct pathways of immuno-modulation improve potency of p53 immunization in rejecting established tumors. Daftarian P; Song GY; Ali S; Faynsod M; Longmate J; Diamond DJ; Ellenhorn JD Cancer Res; 2004 Aug; 64(15):5407-14. PubMed ID: 15289349 [TBL] [Abstract][Full Text] [Related]
32. Synthetic Human TLR9-LRR11 Peptide Attenuates TLR9 Signaling by Binding to and thus Decreasing Internalization of CpG Oligodeoxynucleotides. Pan X; Li B; Kuang M; Liu X; Cen Y; Qin R; Ding G; Zheng J; Zhou H Int J Mol Sci; 2016 Feb; 17(2):242. PubMed ID: 26907260 [TBL] [Abstract][Full Text] [Related]
33. Activation of rabbit TLR9 by different CpG-ODN optimized for mouse and human TLR9. Liu J; Xu C; Liu YL; Matsuo H; Hsieh RP; Lo JF; Tseng PH; Yuan CJ; Luo Y; Xiang R; Chuang TH Comp Immunol Microbiol Infect Dis; 2012 Sep; 35(5):443-51. PubMed ID: 22560893 [TBL] [Abstract][Full Text] [Related]
34. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. Mohsen MO; Gomes AC; Cabral-Miranda G; Krueger CC; Leoratti FM; Stein JV; Bachmann MF J Control Release; 2017 Apr; 251():92-100. PubMed ID: 28257987 [TBL] [Abstract][Full Text] [Related]
35. Exploiting the Lymph-Node-Amplifying Effect for Potent Systemic and Gastrointestinal Immune Responses Du Y; Xia Y; Zou Y; Hu Y; Fu J; Wu J; Gao XD; Ma G ACS Nano; 2019 Dec; 13(12):13809-13817. PubMed ID: 31621292 [TBL] [Abstract][Full Text] [Related]
36. The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide. Lai C; Duan S; Ye F; Hou X; Li X; Zhao J; Yu X; Hu Z; Tang Z; Mo F; Yang X; Lu X Theranostics; 2018; 8(6):1723-1739. PubMed ID: 29556352 [TBL] [Abstract][Full Text] [Related]
37. [Modulation of TLR9 on anti-tumor immune responses of peripheral blood mononuclear cells from patients with non-small-cell lung cancer]. Ren T; Cai YY; Liang YJ; Jin ML; Guo ZL; Tao MF; He X Zhonghua Yi Xue Za Zhi; 2008 Apr; 88(17):1168-72. PubMed ID: 18844109 [TBL] [Abstract][Full Text] [Related]
38. Immunization with antigenic peptides complexed with β-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs. Mochizuki S; Morishita H; Kobiyama K; Aoshi T; Ishii KJ; Sakurai K J Control Release; 2015 Dec; 220(Pt A):495-502. PubMed ID: 26562685 [TBL] [Abstract][Full Text] [Related]
39. Synthetic methylated CpG ODNs are potent in vivo adjuvants when delivered in liposomal nanoparticles. Chikh G; de Jong SD; Sekirov L; Raney SG; Kazem M; Wilson KD; Cullis PR; Dutz JP; Tam YK Int Immunol; 2009 Jul; 21(7):757-67. PubMed ID: 19502586 [TBL] [Abstract][Full Text] [Related]
40. A comparative study of the antigen-specific immune response induced by co-delivery of CpG ODN and antigen using fusion molecules or biodegradable microparticles. Zhang XQ; Dahle CE; Weiner GJ; Salem AK J Pharm Sci; 2007 Dec; 96(12):3283-92. PubMed ID: 17497736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]