BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 2942369)

  • 21. Photoperiodism in higher vertebrates: an adaptive strategy in temporal environment.
    Kumar V
    Indian J Exp Biol; 1997 May; 35(5):427-37. PubMed ID: 9378508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of exogenous and endogenous melatonin on gonadal function in hamsters.
    Stetson MH; Watson-Whitmyre M
    J Neural Transm Suppl; 1986; 21():55-80. PubMed ID: 3462343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms.
    Perreau-Lenz S; Kalsbeek A; Garidou ML; Wortel J; van der Vliet J; van Heijningen C; Simonneaux V; Pévet P; Buijs RM
    Eur J Neurosci; 2003 Jan; 17(2):221-8. PubMed ID: 12542658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary.
    Wood S; Loudon A
    J Endocrinol; 2014 Aug; 222(2):R39-59. PubMed ID: 24891434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human melatonin in physiologic and diseased states: neural control of the rhythm.
    Vaughan GM
    J Neural Transm Suppl; 1986; 21():199-215. PubMed ID: 3462331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster.
    Sáenz de Miera C; Sage-Ciocca D; Simonneaux V; Pévet P; Monecke S
    J Biol Rhythms; 2018 Jun; 33(3):302-317. PubMed ID: 29618281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gonadal responses of the male Syrian hamster to programmed infusions of melatonin are sensitive to signal duration and frequency but not to signal phase nor to lesions of the suprachiasmatic nuclei.
    Maywood ES; Buttery RC; Vance GH; Herbert J; Hastings MH
    Biol Reprod; 1990 Aug; 43(2):174-82. PubMed ID: 2378931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Independence of circadian entrainment state and responses to melatonin in male Siberian hamsters.
    Gorman MR
    BMC Physiol; 2003 Oct; 3():10. PubMed ID: 14527347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms.
    Korf HW
    Gen Comp Endocrinol; 2018 Mar; 258():236-243. PubMed ID: 28511899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Present and future of melatonin in human and animal reproduction functions].
    Pevet P
    Contracept Fertil Sex; 1993 Oct; 21(10):727-32. PubMed ID: 8269019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian and photoperiodic time measurement in male Syrian hamsters following lesions of the melatonin-binding sites of the paraventricular thalamus.
    Ebling FJ; Maywood ES; Humby T; Hastings MH
    J Biol Rhythms; 1992; 7(3):241-54. PubMed ID: 1330085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Melatonin and biological rhythms].
    Pevet P
    Therapie; 1998; 53(5):411-20. PubMed ID: 9921032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How do the suprachiasmatic nuclei of the hypothalamus integrate photoperiodic information?
    Pévet P; Jacob N; Lakhdar-Ghazal N; Vuillez P
    Biol Cell; 1997 Dec; 89(9):569-77. PubMed ID: 9673009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The photoperiod, circadian regulation and chronodisruption: the requisite interplay between the suprachiasmatic nuclei and the pineal and gut melatonin.
    Reiter RJ; Rosales-Corral S; Coto-Montes A; Boga JA; Tan DX; Davis JM; Konturek PC; Konturek SJ; Brzozowski T
    J Physiol Pharmacol; 2011 Jun; 62(3):269-74. PubMed ID: 21893686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).
    Johnston JD; Ebling FJ; Hazlerigg DG
    Eur J Neurosci; 2005 Jun; 21(11):2967-74. PubMed ID: 15978008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melatonin and the seasonal control of reproduction.
    Malpaux B; Thiéry JC; Chemineau P
    Reprod Nutr Dev; 1999; 39(3):355-66. PubMed ID: 10420438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Functional organization of a photoperiodic brain system].
    Zamorskiĭ II; Pishak VP
    Usp Fiziol Nauk; 2003; 34(4):37-53. PubMed ID: 14658302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absence of pineal-independent mediation of seasonal differences in suprachiasmatic nucleus AVP and VIP mRNA expression in Siberian hamsters.
    Freeman DA; Herron JM; Duncan MJ
    Brain Res Mol Brain Res; 2002 May; 101(1-2):33-8. PubMed ID: 12007829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melatonin, the pineal gland, and circadian rhythms.
    Cassone VM; Warren WS; Brooks DS; Lu J
    J Biol Rhythms; 1993; 8 Suppl():S73-81. PubMed ID: 8274765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pineal melatonin in the Djungarian hamster: photoperiodic regulation of a circadian rhythm.
    Yellon SM; Tamarkin L; Pratt BL; Goldman BD
    Endocrinology; 1982 Aug; 111(2):488-92. PubMed ID: 7094883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.