BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29423697)

  • 1. Probing the toxic mechanism of bisphenol A with acid phosphatase at the molecular level.
    Xu M; Zhang R; Song W; Zong W; Liu R
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11431-11439. PubMed ID: 29423697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exploration of the effect and interaction mechanism of bisphenol A on waste sludge hydrolysis with multi-spectra, isothermal titration microcalorimetry and molecule docking.
    Hou G; Zhang R; Hao X; Liu C
    J Hazard Mater; 2017 Jul; 333():32-41. PubMed ID: 28340387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling molecular targets of bisphenol A and S in the thyroid gland.
    Berto-Júnior C; Santos-Silva AP; Ferreira ACF; Graceli JB; de Carvalho DP; Soares P; Romeiro NC; Miranda-Alves L
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):26916-26926. PubMed ID: 30006815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct interactions in the recognition between the environmental estrogen bisphenol AF and human serum albumin.
    Yang L; Lv J; Wang X; Zhang J; Li Q; Zhang T; Zhang Z; Zhang L
    J Mol Recognit; 2015 Aug; 28(8):459-66. PubMed ID: 25694370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico molecular interaction of bisphenol analogues with human nuclear receptors reveals their stronger affinity vs. classical bisphenol A.
    Sharma S; Ahmad S; Khan MF; Parvez S; Raisuddin S
    Toxicol Mech Methods; 2018 Nov; 28(9):660-669. PubMed ID: 29925285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of the interactions between bisphenol-A and its endocrine disrupting analogues with bovine serum albumin using multi-spectroscopic and molecular docking studies.
    Ikhlas S; Usman A; Ahmad M
    J Biomol Struct Dyn; 2019 Apr; 37(6):1427-1437. PubMed ID: 29620490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of Bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies.
    Usman A; Ahmad M
    Chemosphere; 2017 Aug; 181():536-543. PubMed ID: 28463728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the toxic interactions between Bisphenol A and glutathione peroxidase 6 from Arabidopsis thaliana.
    Xiang D; Hou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Oct; 259():119891. PubMed ID: 33984715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review.
    Usman A; Ikhlas S; Ahmad M
    Toxicol Lett; 2019 Sep; 312():222-227. PubMed ID: 31136786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mutispectroscopic study on the structure-affinity relationship of the interactions of bisphenol analogues with bovine serum albumin.
    Gu J; Huang X; Liu H; Dong D; Sun X
    Chemosphere; 2022 Mar; 291(Pt 1):132769. PubMed ID: 34740696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of bisphenol A with bovine hemoglobin using spectroscopic and molecular modeling methods.
    Fang X; Cao S; Liu R
    Appl Spectrosc; 2011 Nov; 65(11):1250-3. PubMed ID: 22054083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular interactions of bisphenols and analogs with glucocorticoid biosynthetic pathway enzymes: an in silico approach.
    Verma G; Khan MF; Akhtar W; Alam MM; Akhter M; Shaquiquzzaman M
    Toxicol Mech Methods; 2018 Jan; 28(1):45-54. PubMed ID: 28715929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided identification of novel protein targets of bisphenol A.
    Montes-Grajales D; Olivero-Verbel J
    Toxicol Lett; 2013 Oct; 222(3):312-20. PubMed ID: 23973438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined in vitro-in silico method for assessing the androgenic activities of bisphenol A and its analogues.
    Park CG; Adnan KM; Cho H; Ryu CS; Yoon J; Kim YJ
    Toxicol In Vitro; 2024 Jun; 98():105838. PubMed ID: 38710238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the toxic interactions between bisphenol A and glutathione S-transferase Phi8 from Arabidopsis thaliana.
    Tang SF; Hou X
    Ecotoxicol Environ Saf; 2021 Apr; 213():112029. PubMed ID: 33578103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel assessment of the effects of bisphenol A and several of its analogs on the adult human testis.
    Desdoits-Lethimonier C; Lesné L; Gaudriault P; Zalko D; Antignac JP; Deceuninck Y; Platel C; Dejucq-Rainsford N; Mazaud-Guittot S; Jégou B
    Hum Reprod; 2017 Jul; 32(7):1465-1473. PubMed ID: 28482050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorination by-products of bisphenol A enhanced retinoid X receptor disrupting effects.
    Li N; Jiang W; Ma M; Wang D; Wang Z
    J Hazard Mater; 2016 Dec; 320():289-295. PubMed ID: 27565853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the effect for bisphenol A on oxidative stress in human hepatocytes and its interaction with catalase.
    Piao X; Liu Z; Li Y; Yao D; Sun L; Wang B; Ma Y; Wang L; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117149. PubMed ID: 31153119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are structural analogues to bisphenol a safe alternatives?
    Rosenmai AK; Dybdahl M; Pedersen M; Alice van Vugt-Lussenburg BM; Wedebye EB; Taxvig C; Vinggaard AM
    Toxicol Sci; 2014 May; 139(1):35-47. PubMed ID: 24563381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico and in vitro studies to elucidate the role of 1HYN and 1QKI activity in BPA induced toxicity and its amelioration by Gallic acid.
    Trivedi M; Vaidya D; Patel C; Prajapati S; Bhatt J
    Chemosphere; 2020 Feb; 241():125076. PubMed ID: 31683422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.