BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 29423709)

  • 41. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.
    Borin GP; Sanchez CC; de Souza AP; de Santana ES; de Souza AT; Paes Leme AF; Squina FM; Buckeridge M; Goldman GH; Oliveira JV
    PLoS One; 2015; 10(6):e0129275. PubMed ID: 26053961
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass.
    Kang SW; Park YS; Lee JS; Hong SI; Kim SW
    Bioresour Technol; 2004 Jan; 91(2):153-6. PubMed ID: 14592744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. β-glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass.
    Sørensen A; Lübeck PS; Lübeck M; Teller PJ; Ahring BK
    Can J Microbiol; 2011 Aug; 57(8):638-50. PubMed ID: 21815831
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor.
    Lan TQ; Wei D; Yang ST; Liu X
    Bioresour Technol; 2013 Apr; 133():175-82. PubMed ID: 23428816
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction of a cellulose-metabolizing Komagataella phaffii (Pichia pastoris) by co-expressing glucanases and β-glucosidase.
    Kickenweiz T; Glieder A; Wu JC
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1297-1306. PubMed ID: 29204897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.
    Fitzpatrick J; Kricka W; James TC; Bond U
    J Appl Microbiol; 2014 Jul; 117(1):96-108. PubMed ID: 24666670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis.
    Tarayre C; Bauwens J; Brasseur C; Mattéotti C; Millet C; Guiot PA; Destain J; Vandenbol M; Portetelle D; De Pauw E; Haubruge E; Francis F; Thonart P
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4369-82. PubMed ID: 25300185
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of agitation speed on tannase production and morphology of Aspergillus niger FETL FT3 in submerged fermentation.
    Darah I; Sumathi G; Jain K; Lim SH
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1682-90. PubMed ID: 21947762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of Xylanase and Cellulase Produced by a Newly Isolated Aspergillus fumigatus N2 and Its Efficient Saccharification of Barley Straw.
    Lin C; Shen Z; Qin W
    Appl Biochem Biotechnol; 2017 Jun; 182(2):559-569. PubMed ID: 27914020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Endoglucanase and xylanase production by Bacillus sp. AR03 in co-culture.
    Hero JS; Pisa JH; Perotti NI; Romero CM; Martínez MA
    Prep Biochem Biotechnol; 2017 Jul; 47(6):589-596. PubMed ID: 28106512
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS; Liu CG; Zhao XQ; Bai FW
    J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of xylanase production by filamentous fungi in solid-state fermentation and scale-up to horizontal tube bioreactor.
    Pérez-Rodríguez N; Oliveira F; Pérez-Bibbins B; Belo I; Torrado Agrasar A; Domínguez JM
    Appl Biochem Biotechnol; 2014 Jun; 173(3):803-25. PubMed ID: 24728763
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase.
    Cunha FM; Esperança MN; Zangirolami TC; Badino AC; Farinas CS
    Bioresour Technol; 2012 May; 112():270-4. PubMed ID: 22409979
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass.
    Grigorevski-Lima AL; de Oliveira MM; do Nascimento RP; Bon EP; Coelho RR
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of cellulolytic enzymes by fungi Acrophialophora nainiana and Ceratocystis paradoxa using different carbon sources.
    Barros RR; Oliveira RA; Gottschalk LM; Bon EP
    Appl Biochem Biotechnol; 2010 May; 161(1-8):448-54. PubMed ID: 20174889
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous saccharification and fermentation of rice straw into ethanol.
    Chadha BS; Kanwar SS; Garcha HS
    Acta Microbiol Immunol Hung; 1995; 42(1):71-5. PubMed ID: 7620815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities.
    Xue X; Wu Y; Qin X; Ma R; Luo H; Su X; Yao B
    Microb Cell Fact; 2016 Jul; 15(1):122. PubMed ID: 27400964
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous production of high activities of thermostable endoglucanase and beta-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus.
    Gomes I; Gomes J; Gomes DJ; Steiner W
    Appl Microbiol Biotechnol; 2000 Apr; 53(4):461-8. PubMed ID: 10803904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comprehensive Optimization of Culture Conditions for Production of Biomass-Hydrolyzing Enzymes of Trichoderma SG2 in Submerged and Solid-State Fermentation.
    Nanjundaswamy A; Okeke BC
    Appl Biochem Biotechnol; 2020 May; 191(1):444-462. PubMed ID: 32248370
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes.
    Falkoski DL; Guimarães VM; de Almeida MN; Alfenas AC; Colodette JL; de Rezende ST
    Bioresour Technol; 2013 Feb; 130():296-305. PubMed ID: 23313674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.