BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29423845)

  • 1. Primer Design and Inverse PCR on Yeast Display Antibody Selection Outputs.
    Ferrara F; Bradbury ARM; D'Angelo S
    Methods Mol Biol; 2018; 1721():35-45. PubMed ID: 29423845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next-generation sequencing-guided identification and reconstruction of antibody CDR combinations from phage selection outputs.
    Barreto K; Maruthachalam BV; Hill W; Hogan D; Sutherland AR; Kusalik A; Fonge H; DeCoteau JF; Geyer CR
    Nucleic Acids Res; 2019 May; 47(9):e50. PubMed ID: 30854567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding.
    D'Angelo S; Ferrara F; Naranjo L; Erasmus MF; Hraber P; Bradbury ARM
    Front Immunol; 2018; 9():395. PubMed ID: 29568296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library.
    Yang W; Yoon A; Lee S; Kim S; Han J; Chung J
    Exp Mol Med; 2017 Mar; 49(3):e308. PubMed ID: 28336957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting next-generation sequencing in antibody selections - a simple PCR method to recover binders.
    Ferrara F; Teixeira AA; Naranjo L; Erasmus MF; D'Angelo S; Bradbury ARM
    MAbs; 2020; 12(1):1701792. PubMed ID: 31829073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next generation sequencing of all variable loops of synthetic single framework scFv-Application in anti-HDL antibody selections.
    Lövgren J; Pursiheimo JP; Pyykkö M; Salmi J; Lamminmäki U
    N Biotechnol; 2016 Dec; 33(6):790-796. PubMed ID: 27450754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and molecular characterization of mouse single-chain variable fragment antibodies against Burkholderia mallei and Burkholderia pseudomallei.
    Kim HS; Tsai S; Zou N; Lo SC; Wear DJ; Izadjoo MJ
    J Immunol Methods; 2011 Feb; 365(1-2):101-9. PubMed ID: 21172353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short Read-Length Next Generation DNA Sequencing of Antibody CDR Combinations from Phage Selection Outputs.
    Pastushok L; Barreto K; Geyer CR
    Methods Mol Biol; 2022; 2313():127-141. PubMed ID: 34478134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-Generation DNA Sequencing of V
    Henry KA
    Methods Mol Biol; 2018; 1701():425-446. PubMed ID: 29116520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective Optimization of Antibody Affinity by Phage Display Integrated with High-Throughput DNA Synthesis and Sequencing Technologies.
    Hu D; Hu S; Wan W; Xu M; Du R; Zhao W; Gao X; Liu J; Liu H; Hong J
    PLoS One; 2015; 10(6):e0129125. PubMed ID: 26046845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries.
    Azevedo Reis Teixeira A; Erasmus MF; D'Angelo S; Naranjo L; Ferrara F; Leal-Lopes C; Durrant O; Galmiche C; Morelli A; Scott-Tucker A; Bradbury ARM
    MAbs; 2021; 13(1):1980942. PubMed ID: 34850665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring Phage Biopanning by Next-Generation Sequencing.
    Vaisman-Mentesh A; Wine Y
    Methods Mol Biol; 2018; 1701():463-473. PubMed ID: 29116522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibody Isolation from Human Synthetic Libraries of Single-Chain Antibodies and Analysis Using NGS.
    Amir A; Taussig D; Bitton A; Nahary L; Vaisman-Mentesh A; Benhar I; Wine Y
    Methods Mol Biol; 2023; 2702():347-372. PubMed ID: 37679629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. By-passing in vitro screening--next generation sequencing technologies applied to antibody display and in silico candidate selection.
    Ravn U; Gueneau F; Baerlocher L; Osteras M; Desmurs M; Malinge P; Magistrelli G; Farinelli L; Kosco-Vilbois MH; Fischer N
    Nucleic Acids Res; 2010 Nov; 38(21):e193. PubMed ID: 20846958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of an scFv library by enzymatic assembly of V(L) and V(H) genes.
    Kato M; Hanyu Y
    J Immunol Methods; 2013 Oct; 396(1-2):15-22. PubMed ID: 23916870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity.
    Bai X; Kim J; Kang S; Kim W; Shim H
    PLoS One; 2015; 10(10):e0141045. PubMed ID: 26484868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of anti-Burkholderia mouse monoclonal antibody from various phage-displayed single-chain antibody libraries.
    Kim HS; Lo SC; Wear DJ; Stojadinovic A; Weina PJ; Izadjoo MJ
    J Immunol Methods; 2011 Sep; 372(1-2):146-61. PubMed ID: 21787781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Synthetic Antibody Library with Complementarity-Determining Region Diversities Designed for an Improved Amplification Profile.
    Bai X; Jang M; Lee NJ; Nguyen TTH; Jung M; Hwang JY; Shim H
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35682935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humanization of Chicken-Derived scFv Using Yeast Surface Display and NGS Data Mining.
    Elter A; Bogen JP; Hinz SC; Fiebig D; Macarrón Palacios A; Grzeschik J; Hock B; Kolmar H
    Biotechnol J; 2021 Mar; 16(3):e2000231. PubMed ID: 33078896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From deep sequencing to actual clones.
    D'Angelo S; Kumar S; Naranjo L; Ferrara F; Kiss C; Bradbury AR
    Protein Eng Des Sel; 2014 Oct; 27(10):301-7. PubMed ID: 25183780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.