BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29424032)

  • 1. A Self-Powered Sensor Mimicking Slow- and Fast-Adapting Cutaneous Mechanoreceptors.
    Chun KY; Son YJ; Jeon ES; Lee S; Han CS
    Adv Mater; 2018 Mar; 30(12):e1706299. PubMed ID: 29424032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin.
    Chun S; Son W; Kim H; Lim SK; Pang C; Choi C
    Nano Lett; 2019 May; 19(5):3305-3312. PubMed ID: 31021638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Single-Mode, Self-Adapting, and Self-Powered Mechanoreceptor Based on a Potentiometric-Triboelectric Hybridized Sensing Mechanism for Resolving Complex Stimuli.
    Wu X; Zhu J; Evans JW; Arias AC
    Adv Mater; 2020 Dec; 32(50):e2005970. PubMed ID: 33179325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Powered, Stretchable, and Wearable Ion Gel Mechanoreceptor Sensors.
    Chun KY; Seo S; Han CS
    ACS Sens; 2021 May; 6(5):1940-1948. PubMed ID: 34004113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral Sensor Inspired by Cone Photoreceptors and Ion Channels without External Power.
    Chun KY; Han CS
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34385-34391. PubMed ID: 30207683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinearly Frequency-Adaptive, Self-Powered, Proton-Driven Somatosensor Inspired by a Human Mechanoreceptor.
    Chun KY; Son YJ; Seo S; Lee HJ; Han CS
    ACS Sens; 2020 Mar; 5(3):845-852. PubMed ID: 32096629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Skin-Inspired Artificial Mechanoreceptor for Tactile Enhancement and Integration.
    Li F; Wang R; Song C; Zhao M; Ren H; Wang S; Liang K; Li D; Ma X; Zhu B; Wang H; Hao Y
    ACS Nano; 2021 Oct; 15(10):16422-16431. PubMed ID: 34597014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A skin-inspired organic digital mechanoreceptor.
    Tee BC; Chortos A; Berndt A; Nguyen AK; Tom A; McGuire A; Lin ZC; Tien K; Bae WG; Wang H; Mei P; Chou HH; Cui B; Deisseroth K; Ng TN; Bao Z
    Science; 2015 Oct; 350(6258):313-6. PubMed ID: 26472906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses in glabrous skin mechanoreceptors during precision grip in humans.
    Westling G; Johansson RS
    Exp Brain Res; 1987; 66(1):128-40. PubMed ID: 3582527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Flexible Pressure Sensors Made from Conductive Micropyramids for Manipulation Tasks.
    Ma C; Xu D; Huang YC; Wang P; Huang J; Zhou J; Liu W; Li ST; Huang Y; Duan X
    ACS Nano; 2020 Oct; 14(10):12866-12876. PubMed ID: 32938185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of motion on the skin. I. Receptive fields and temporal frequency coding by cutaneous mechanoreceptors of OPTACON pulses delivered to the hand.
    Gardner EP; Palmer CI
    J Neurophysiol; 1989 Dec; 62(6):1410-36. PubMed ID: 2600632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response characteristics of cutaneous mechanoreceptors to vibratory stimuli in human glabrous skin.
    Toma S; Nakajima Y
    Neurosci Lett; 1995 Jul; 195(1):61-3. PubMed ID: 7478256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring.
    Kim DI; Trung TQ; Hwang BU; Kim JS; Jeon S; Bae J; Park JJ; Lee NE
    Sci Rep; 2015 Jul; 5():12705. PubMed ID: 26223845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of Fast and Slow Adaptions in the Tactile Sensation of Mechanoreceptors Mimicked by Hybrid Fluid (HF) Rubber with Equivalent Electric Circuits and Properties.
    Shimada K
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental validation of a polyvinylidene fluoride sensing element in a tactile sensor.
    Yahud S; Dokos S; Morley JW; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5760-3. PubMed ID: 21097336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Digital Hardware Realization for Spiking Model of Cutaneous Mechanoreceptor.
    Salimi-Nezhad N; Amiri M; Falotico E; Laschi C
    Front Neurosci; 2018; 12():322. PubMed ID: 29937707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlations among Firing Rates of Tactile, Thermal, Gustatory, Olfactory, and Auditory Sensations Mimicked by Artificial Hybrid Fluid (HF) Rubber Mechanoreceptors.
    Shimada K
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single unit responses of human cutaneous mechanoreceptors to air-puff stimulation.
    Mizobuchi K; Kuwabara S; Toma S; Nakajima Y; Ogawara K; Hattori T
    Clin Neurophysiol; 2000 Sep; 111(9):1577-81. PubMed ID: 10964067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of velocity and direction of surface-parallel cutaneous stimuli on responses of mechanoreceptors in feline hairy skin.
    Greenspan JD
    J Neurophysiol; 1992 Sep; 68(3):876-89. PubMed ID: 1432054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic dual sensing polymer nanocomposite for biomedical applications.
    Omar AM; Hassan MH; Daskalakis E; Smith A; Dooghue J; Mirihanage W; Bartolo PJDS
    Front Bioeng Biotechnol; 2024; 12():1322753. PubMed ID: 38444647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.