These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 29424138)
1. [Cofactor engineering strategy for enhanced S-adenosylmethionine production in Saccharomyces cerevisiae]. Chen Y Sheng Wu Gong Cheng Xue Bao; 2018 Feb; 34(2):246-254. PubMed ID: 29424138 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae. Zhao X; Shi F; Zhan W Lett Appl Microbiol; 2015 Oct; 61(4):354-60. PubMed ID: 26179622 [TBL] [Abstract][Full Text] [Related]
3. Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris ( Tomàs-Gamisans M; Andrade CCP; Maresca F; Monforte S; Ferrer P; Albiol J Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31757828 [TBL] [Abstract][Full Text] [Related]
4. Effect of NADH kinase on poly-3-hydroxybutyrate production by recombinant Escherichia coli. Hong PH; Zhang J; Liu XJ; Tan TW; Li ZJ J Biosci Bioeng; 2016 Dec; 122(6):685-688. PubMed ID: 27353858 [TBL] [Abstract][Full Text] [Related]
5. Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker's Yeast ( Saccharomyces cerevisiae). Chen Y; Tan T J Agric Food Chem; 2018 May; 66(20):5200-5209. PubMed ID: 29722539 [TBL] [Abstract][Full Text] [Related]
6. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain. Zhao W; Hang B; Zhu X; Wang R; Shen M; Huang L; Xu Z J Biotechnol; 2016 Oct; 236():64-70. PubMed ID: 27510807 [TBL] [Abstract][Full Text] [Related]
7. [Effects of overexpression of NADH kinase gene on ethanol fermentation by Saccharomyces cerevisiae]. Wang H; Zhang L; Shi G Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1381-9. PubMed ID: 25720153 [TBL] [Abstract][Full Text] [Related]
8. Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae. Paramasivan K; Mutturi S J Agric Food Chem; 2017 Sep; 65(37):8162-8170. PubMed ID: 28845666 [TBL] [Abstract][Full Text] [Related]
9. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Jo JH; Oh SY; Lee HS; Park YC; Seo JH Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683 [TBL] [Abstract][Full Text] [Related]
10. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Jayakody LN; Horie K; Hayashi N; Kitagaki H Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286 [TBL] [Abstract][Full Text] [Related]
11. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Hou J; Vemuri GN; Bao X; Olsson L Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731 [TBL] [Abstract][Full Text] [Related]
12. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. Outten CE; Culotta VC EMBO J; 2003 May; 22(9):2015-24. PubMed ID: 12727869 [TBL] [Abstract][Full Text] [Related]
13. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae. Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide. Zhang X; Fen M; Shi X; Bai L; Zhou P Appl Microbiol Biotechnol; 2008 Apr; 78(6):991-5. PubMed ID: 18330566 [TBL] [Abstract][Full Text] [Related]
15. Efficient production of S-adenosyl-l-methionine from dl-methionine in metabolic engineered Saccharomyces cerevisiae. Liu W; Tang D; Shi R; Lian J; Huang L; Cai J; Xu Z Biotechnol Bioeng; 2019 Dec; 116(12):3312-3323. PubMed ID: 31478186 [TBL] [Abstract][Full Text] [Related]
16. Enhanced synthesis of S-adenosyl-L-methionine through combinatorial metabolic engineering and Bayesian optimization in Saccharomyces cerevisiae. Xiao W; Shi X; Huang H; Wang X; Liang W; Xu J; Liu F; Zhang X; Xu G; Shi J; Xu Z Biotechnol J; 2024 Mar; 19(3):e2300650. PubMed ID: 38479990 [TBL] [Abstract][Full Text] [Related]
17. Accumulation of intracellular S-adenosylmethionine increases the fermentation rate of bottom-fermenting brewer's yeast during high-gravity brewing. Oomuro M; Watanabe D; Sugimoto Y; Kato T; Motoyama Y; Watanabe T; Takagi H J Biosci Bioeng; 2018 Dec; 126(6):736-741. PubMed ID: 29921531 [TBL] [Abstract][Full Text] [Related]
18. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Lee WH; Kim MD; Jin YS; Seo JH Appl Microbiol Biotechnol; 2013 Apr; 97(7):2761-72. PubMed ID: 23420268 [TBL] [Abstract][Full Text] [Related]
19. Repression of mitochondrial metabolism for cytosolic pyruvate-derived chemical production in Saccharomyces cerevisiae. Morita K; Matsuda F; Okamoto K; Ishii J; Kondo A; Shimizu H Microb Cell Fact; 2019 Oct; 18(1):177. PubMed ID: 31615527 [TBL] [Abstract][Full Text] [Related]
20. Synthetic lethal and biochemical analyses of NAD and NADH kinases in Saccharomyces cerevisiae establish separation of cellular functions. Bieganowski P; Seidle HF; Wojcik M; Brenner C J Biol Chem; 2006 Aug; 281(32):22439-45. PubMed ID: 16760478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]