These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29424231)

  • 1. Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue.
    Shimizu FM; Pasqualeti AM; Todão FR; de Oliveira JFA; Vieira LCS; Gonçalves SPC; da Silva GH; Cardoso MB; Gobbi AL; Martinez DST; Oliveira ON; Lima RS
    ACS Sens; 2018 Mar; 3(3):716-726. PubMed ID: 29424231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalization-Free Microfluidic Electronic Tongue Based on a Single Response.
    Shimizu FM; Todão FR; Gobbi AL; Oliveira ON; Garcia CD; Lima RS
    ACS Sens; 2017 Jul; 2(7):1027-1034. PubMed ID: 28750534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic E-Tongue System Using Layer-by-Layer Films Deposited onto Interdigitated Electrodes Inside a Polydimethylsiloxane Microchannel.
    Braunger ML; Daikuzono CM; Riul A
    Methods Mol Biol; 2019; 2027():141-150. PubMed ID: 31309478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.
    Lin Y; Zhou Q; Li J; Shu J; Qiu Z; Lin Y; Tang D
    Anal Chem; 2016 Jan; 88(1):1030-8. PubMed ID: 26609552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomaterials-modified cellulose paper as a platform for biosensing applications.
    Ge S; Zhang L; Zhang Y; Lan F; Yan M; Yu J
    Nanoscale; 2017 Mar; 9(13):4366-4382. PubMed ID: 28155933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.
    Li H; Song SI; Song GY; Kim I
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1425-40. PubMed ID: 24749433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoluminescence properties of graphene versus other carbon nanomaterials.
    Cao L; Meziani MJ; Sahu S; Sun YP
    Acc Chem Res; 2013 Jan; 46(1):171-80. PubMed ID: 23092181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a microfluidic electronic tongue based on impedance spectroscopy for coconut water analysis.
    Americo da Silva T; Acuña Caldeira Juncá M; Braunger ML; Riul A; Fernandes Barbin D
    Food Res Int; 2024 Jul; 187():114353. PubMed ID: 38763640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomaterials and lab-on-a-chip technologies.
    Medina-Sánchez M; Miserere S; Merkoçi A
    Lab Chip; 2012 May; 12(11):1932-43. PubMed ID: 22517169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing.
    Malic L; Morton K; Clime L; Veres T
    Lab Chip; 2013 Mar; 13(5):798-810. PubMed ID: 23287840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials.
    Pang R; Zhu Q; Wei J; Meng X; Wang Z
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomechanical Microfluidic Mixing and Rapid Labeling of Silica Nanoparticles using Allenamide-Thiol Covalent Linkage for Bioimaging.
    Sreejith S; Kishor R; Abbas A; Thomas R; Yeo T; Ranjan VD; Vaidyanathan R; Seah YP; Xing B; Wang Z; Zeng L; Zheng Y; Lim CT
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4867-4875. PubMed ID: 30624893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.
    Hansson J; Yasuga H; Haraldsson T; van der Wijngaart W
    Lab Chip; 2016 Jan; 16(2):298-304. PubMed ID: 26646057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive chemiluminescence immunoassay on chitosan membrane modified paper platform using TiO2 nanoparticles/multiwalled carbon nanotubes as label.
    Li W; Ge S; Wang S; Yan M; Ge L; Yu J
    Luminescence; 2013; 28(4):496-502. PubMed ID: 23355319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.
    Saha A; Jana NR
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):996-1003. PubMed ID: 25521159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.
    Huang X; Tao Z; Praskavich JC; Goswami A; Al-Sharab JF; Minko T; Polshettiwar V; Asefa T
    Langmuir; 2014 Sep; 30(36):10886-98. PubMed ID: 25188675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.
    Adam V; Vaculovicova M
    Electrophoresis; 2017 Oct; 38(19):2389-2404. PubMed ID: 28665525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis.
    Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP
    Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring.
    Liu J; Zhang Y; Jiang M; Tian L; Sun S; Zhao N; Zhao F; Li Y
    Biosens Bioelectron; 2017 May; 91():714-720. PubMed ID: 28126661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.