BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29424462)

  • 1. Environmental and genetic control of cold tolerance in the Glanville fritillary butterfly.
    de Jong MA; Saastamoinen M
    J Evol Biol; 2018 May; 31(5):636-645. PubMed ID: 29424462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic plasticity in thermal tolerance in the Glanville fritillary butterfly.
    Luo S; Chong Wong S; Xu C; Hanski I; Wang R; Lehtonen R
    J Therm Biol; 2014 May; 42():33-9. PubMed ID: 24802146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.
    Mattila AL
    Ecol Evol; 2015 Dec; 5(23):5539-51. PubMed ID: 27069604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long- and short-term phenotypic plasticity.
    Noh S; Everman ER; Berger CM; Morgan TJ
    Ecol Evol; 2017 Jul; 7(14):5248-5257. PubMed ID: 28770063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock protein 70 gene family in the Glanville fritillary butterfly and their response to thermal stress.
    Luo S; Ahola V; Shu C; Xu C; Wang R
    Gene; 2015 Feb; 556(2):132-41. PubMed ID: 25433328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome P450 gene CYP337 and heritability of fitness traits in the Glanville fritillary butterfly.
    de Jong MA; Wong SC; Lehtonen R; Hanski I
    Mol Ecol; 2014 Apr; 23(8):1994-2005. PubMed ID: 24552294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature- and sex-related effects of serine protease alleles on larval development in the Glanville fritillary butterfly.
    Ahola V; Koskinen P; Wong SC; Kvist J; Paulin L; Auvinen P; Saastamoinen M; Frilander MJ; Lehtonen R; Hanski I
    J Evol Biol; 2015 Dec; 28(12):2224-35. PubMed ID: 26337146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA sequencing reveals differential thermal regulation mechanisms between sexes of Glanville fritillary butterfly in the Tianshan Mountains, China.
    Lei Y; Wang Y; Ahola V; Luo S; Xu C; Wang R
    Mol Biol Rep; 2016 Dec; 43(12):1423-1433. PubMed ID: 27649991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly.
    Wong SC; Oksanen A; Mattila AL; Lehtonen R; Niitepõld K; Hanski I
    J Insect Physiol; 2016 Feb; 85():23-31. PubMed ID: 26658138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastic larval development in a butterfly has complex environmental and genetic causes and consequences for population dynamics.
    Saastamoinen M; Ikonen S; Wong SC; Lehtonen R; Hanski I
    J Anim Ecol; 2013 May; 82(3):529-39. PubMed ID: 23347450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of the mechanism of phenotypic plasticity in satyrid butterfly eyespots.
    Bhardwaj S; Jolander LS; Wenk MR; Oliver JC; Nijhout HF; Monteiro A
    Elife; 2020 Feb; 9():. PubMed ID: 32041684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotypic and environmental effects on flight activity and oviposition in the Glanville fritillary butterfly.
    Saastamoinen M; Hanski I
    Am Nat; 2008 Jun; 171(6):701-12. PubMed ID: 18419339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant,
    Tonione MA; Cho SM; Richmond G; Irian C; Tsutsui ND
    Ecol Evol; 2020 Jun; 10(11):4749-4761. PubMed ID: 32551058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the aerobic capacity of flight muscles between butterfly populations and species with dissimilar flight abilities.
    Rauhamäki V; Wolfram J; Jokitalo E; Hanski I; Dahlhoff EP
    PLoS One; 2014; 9(1):e78069. PubMed ID: 24416122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does selection on increased cold tolerance in the adult stage confer resistance throughout development?
    Dierks A; Kölzow N; Franke K; Fischer K
    J Evol Biol; 2012 Aug; 25(8):1650-7. PubMed ID: 22686583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum.
    Scharf I; Wexler Y; MacMillan HA; Presman S; Simson E; Rosenstein S
    Naturwissenschaften; 2016 Apr; 103(3-4):20. PubMed ID: 26888763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three amino acid substitutions contributing to thermostability of phosphoglucose isomerase in the Glanville fritillary butterfly.
    Yang J; Wang D; Liu H; Wang L; Jin L; Ahola V; Xu C; Wang R
    Insect Sci; 2023 Jun; 30(3):758-770. PubMed ID: 36342954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geographic variation in larval cold tolerance and exposure across the invasion front of a widely established forest insect.
    Hafker P; Thompson LM; Walter JA; Parry D; Grayson KL
    Insect Sci; 2024 Mar; ():. PubMed ID: 38516807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Integrative Physiology of Insect Chill Tolerance.
    Overgaard J; MacMillan HA
    Annu Rev Physiol; 2017 Feb; 79():187-208. PubMed ID: 27860831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indications for rapid evolution of trait means and thermal plasticity in range-expanding populations of a butterfly.
    Neu A; Fischer K
    J Evol Biol; 2022 Jan; 35(1):124-133. PubMed ID: 34860427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.