These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29424462)

  • 61. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude?
    Overgaard J; Kristensen TN; Mitchell KA; Hoffmann AA
    Am Nat; 2011 Oct; 178 Suppl 1():S80-96. PubMed ID: 21956094
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Plastic changes in cold and drought tolerance of Drosophila nepalensis correlate with sex-specific differences in body melanization, cuticular lipid mass, proline accumulation, and seasonal abundance.
    Parkash R; Lambhod C
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Aug; 258():110985. PubMed ID: 34023536
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance.
    MacMillan HA; Ferguson LV; Nicolai A; Donini A; Staples JF; Sinclair BJ
    J Exp Biol; 2015 Feb; 218(Pt 3):423-32. PubMed ID: 25524989
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An evolutionary analysis of flightin reveals a conserved motif unique and widespread in Pancrustacea.
    Soto-Adames FN; Alvarez-Ortiz P; Vigoreaux JO
    J Mol Evol; 2014 Jan; 78(1):24-37. PubMed ID: 24271855
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly.
    Vesala L; Salminen TS; Koštál V; Zahradníčková H; Hoikkala A
    J Exp Biol; 2012 Aug; 215(Pt 16):2891-7. PubMed ID: 22837463
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetic variation in senescence marker protein-30 is associated with natural variation in cold tolerance in Drosophila.
    Clowers KJ; Lyman RF; Mackay TF; Morgan TJ
    Genet Res (Camb); 2010 Apr; 92(2):103-13. PubMed ID: 20515514
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure.
    Orsini L; Corander J; Alasentie A; Hanski I
    Mol Ecol; 2008 Jun; 17(11):2629-42. PubMed ID: 18466229
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanisms underlying insect chill-coma.
    Macmillan HA; Sinclair BJ
    J Insect Physiol; 2011 Jan; 57(1):12-20. PubMed ID: 20969872
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular cloning and expression in vitro of a carboxylesterase gene from the Glanville fritillary butterfly (Melitaea cinxia).
    Luo S; Shu C; Xu C; Wang R
    Gene; 2013 Jul; 524(2):275-81. PubMed ID: 23603019
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Significant effects of Pgi genotype and body reserves on lifespan in the Glanville fritillary butterfly.
    Saastamoinen M; Ikonen S; Hanski I
    Proc Biol Sci; 2009 Apr; 276(1660):1313-22. PubMed ID: 19129143
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille.
    Poikela N; Tyukmaeva V; Hoikkala A; Kankare M
    BMC Ecol Evol; 2021 Jun; 21(1):117. PubMed ID: 34112109
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enzyme polymorphism, oxygen and injury: a lipidomic analysis of flight-induced oxidative damage in a
    Pekny JE; Smith PB; Marden JH
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29444838
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits.
    Anderson AR; Hoffmann AA; McKechnie SW
    Genet Res; 2005 Feb; 85(1):15-22. PubMed ID: 16089033
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly.
    Tack AJ; Mononen T; Hanski I
    Proc Biol Sci; 2015 May; 282(1806):20150173. PubMed ID: 25854888
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Functional characterization of the Frost gene in Drosophila melanogaster: importance for recovery from chill coma.
    Colinet H; Lee SF; Hoffmann A
    PLoS One; 2010 Jun; 5(6):e10925. PubMed ID: 20532197
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Beyond thermal melanism: association of wing melanization with fitness and flight behaviour in a butterfly.
    Rosa E; Saastamoinen M
    Anim Behav; 2020 Sep; 167():275-288. PubMed ID: 32952201
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Understanding costs and benefits of thermal plasticity for pest management: insights from the integration of laboratory, semi-field and field assessments of
    Steyn VM; Mitchell KA; Nyamukondiwa C; Terblanche JS
    Bull Entomol Res; 2022 Aug; 112(4):458-468. PubMed ID: 35535735
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A comparative study of the short term cold resistance response in distantly related Drosophila species: the role of regucalcin and frost.
    Reis M; Vieira CP; Morales-Hojas R; Aguiar B; Rocha H; Schlötterer C; Vieira J
    PLoS One; 2011; 6(10):e25520. PubMed ID: 21991316
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study.
    Olsson T; MacMillan HA; Nyberg N; Staerk D; Malmendal A; Overgaard J
    J Exp Biol; 2016 Aug; 219(Pt 16):2504-13. PubMed ID: 27307488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.