These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29424707)

  • 1. Quantitative investigation on the critical thickness of the dielectric shell for metallic nanoparticles determined by the plasmon decay length.
    Li A; Lim X; Guo L; Li S
    Nanotechnology; 2018 Apr; 29(16):165501. PubMed ID: 29424707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the loss of electric field enhancement for plasmonic core-shell nanoparticle dimers by high refractive index dielectric coating.
    Zhai Y; Deng L; Chen Y; Wang N; Huang Y
    J Phys Condens Matter; 2020 Mar; 32(10):105001. PubMed ID: 31658445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles.
    Chaffin EA; Bhana S; O'Connor RT; Huang X; Wang Y
    J Phys Chem B; 2014 Dec; 118(49):14076-84. PubMed ID: 25010347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.
    Liu X; Li D; Sun X; Li Z; Song H; Jiang H; Chen Y
    Sci Rep; 2015 Jul; 5():12555. PubMed ID: 26218501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.
    Li X; Niitsoo O; Couzis A
    J Colloid Interface Sci; 2016 Mar; 465():333-41. PubMed ID: 26699450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of size, shape and core-shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiO x.
    D'Addato S; Pinotti D; Spadaro MC; Paolicelli G; Grillo V; Valeri S; Pasquali L; Bergamini L; Corni S
    Beilstein J Nanotechnol; 2015; 6():404-13. PubMed ID: 25821680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic enhancement of second harmonic generation on metal coated nanoparticles.
    Wunderlich S; Peschel U
    Opt Express; 2013 Aug; 21(16):18611-23. PubMed ID: 23938778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence enhancement in visible light: dielectric or noble metal?
    Sun S; Wu L; Bai P; Png CE
    Phys Chem Chem Phys; 2016 Jul; 18(28):19324-35. PubMed ID: 27374052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic and colloidal stability behaviours of Au-acrylic core-shell nanoparticles with thin pH-responsive shells.
    Wu S; Zhu M; Lian Q; Lu D; Spencer B; Adlam DJ; Hoyland JA; Volk K; Karg M; Saunders BR
    Nanoscale; 2018 Oct; 10(39):18565-18575. PubMed ID: 30259044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensoric potential of gold-silver core-shell nanoparticles.
    Steinbrück A; Stranik O; Csaki A; Fritzsche W
    Anal Bioanal Chem; 2011 Sep; 401(4):1241-9. PubMed ID: 21739351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core and shell sizing of small silver-coated nanospheres by optical extinction spectroscopy.
    Schinca DC; Scaffardi LB
    Nanotechnology; 2008 Dec; 19(49):495712. PubMed ID: 21730692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon near-field resonance characteristics of silver shell nanocylinders arranged in triangular geometry.
    Jacob J; R A; Mathew V
    Appl Opt; 2011 Nov; 50(33):6277-82. PubMed ID: 22108888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gap controlled plasmon-dielectric coupling effects investigated with single nanoparticle-terminated atomic force microscope probes.
    Huang Q; Teran Arce F; Lee J; Yoon I; Villanueva J; Lal R; Sirbuly DJ
    Nanoscale; 2016 Oct; 8(39):17102-17107. PubMed ID: 27714046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.
    Balasubramanian B; Kraemer KL; Reding NA; Skomski R; Ducharme S; Sellmyer DJ
    ACS Nano; 2010 Apr; 4(4):1893-900. PubMed ID: 20359188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay.
    Zhu J; Li JJ; Wang AQ; Chen Y; Zhao JW
    Nanoscale Res Lett; 2010 Jun; 5(9):1496-1501. PubMed ID: 20730117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide.
    Awazu K; Fujimaki M; Rockstuhl C; Tominaga J; Murakami H; Ohki Y; Yoshida N; Watanabe T
    J Am Chem Soc; 2008 Feb; 130(5):1676-80. PubMed ID: 18189392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles.
    Li Y; Wan M; Wu W; Chen Z; Zhan P; Wang Z
    Sci Rep; 2015 Aug; 5():12491. PubMed ID: 26282896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P; Wan M; Wu W; Chen Z; Wang Z
    Nanoscale; 2016 May; 8(19):10358-63. PubMed ID: 27139034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enlarge the biologic coating-induced absorbance enhancement of Au-Ag bimetallic nanoshells by tuning the metal composition.
    Zhu J; Li X; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():571-577. PubMed ID: 28881282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-shell stability of nanoparticles plays an important role for overcoming the intestinal mucus and epithelium barrier.
    Liu M; Wu L; Zhu X; Shan W; Li L; Cui Y; Huang Y
    J Mater Chem B; 2016 Sep; 4(35):5831-5841. PubMed ID: 32263756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.