These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 29425043)
1. Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples. Wu S; Liu L; Duan N; Li Q; Zhou Y; Wang Z J Agric Food Chem; 2018 Feb; 66(8):1949-1954. PubMed ID: 29425043 [TBL] [Abstract][Full Text] [Related]
2. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Sun S; Zhao R; Feng S; Xie Y Mikrochim Acta; 2018 Nov; 185(12):535. PubMed ID: 30406298 [TBL] [Abstract][Full Text] [Related]
3. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Wang L; Ma W; Chen W; Liu L; Ma W; Zhu Y; Xu L; Kuang H; Xu C Biosens Bioelectron; 2011 Feb; 26(6):3059-62. PubMed ID: 21167704 [TBL] [Abstract][Full Text] [Related]
4. Screening of single-stranded DNA (ssDNA) aptamers against a zearalenone monoclonal antibody and development of a ssDNA-based enzyme-linked oligonucleotide assay for determination of zearalenone in corn. Wang YK; Zou Q; Sun JH; Wang HA; Sun X; Chen ZF; Yan YX J Agric Food Chem; 2015 Jan; 63(1):136-41. PubMed ID: 25485848 [TBL] [Abstract][Full Text] [Related]
5. Selection of a DNA Aptamer against Zearalenone and Docking Analysis for Highly Sensitive Rapid Visual Detection with Label-Free Aptasensor. Zhang Y; Lu T; Wang Y; Diao C; Zhou Y; Zhao L; Chen H J Agric Food Chem; 2018 Nov; 66(45):12102-12110. PubMed ID: 30346760 [TBL] [Abstract][Full Text] [Related]
6. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B He D; Wu Z; Cui B; Jin Z; Xu E Mikrochim Acta; 2020 Apr; 187(4):254. PubMed ID: 32239300 [TBL] [Abstract][Full Text] [Related]
7. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods. Chen R; Li S; Sun Y; Huo B; Xia Y; Qin Y; Li S; Shi B; He D; Liang J; Gao Z Mikrochim Acta; 2021 Jul; 188(8):281. PubMed ID: 34331147 [TBL] [Abstract][Full Text] [Related]
8. Development of an immunochromatographic strip test for the rapid detection of zearalenone in corn. Sun Y; Hu X; Zhang Y; Yang J; Wang F; Wang Y; Deng R; Zhang G J Agric Food Chem; 2014 Nov; 62(46):11116-21. PubMed ID: 25343335 [TBL] [Abstract][Full Text] [Related]
9. Towards high-efficient online specific discrimination of zearalenone by using gold nanoparticles@aptamer-based affinity monolithic column. Xu J; Chi J; Lin C; Lin X; Xie Z J Chromatogr A; 2020 Jun; 1620():461026. PubMed ID: 32178860 [TBL] [Abstract][Full Text] [Related]
10. An aptamer-based fluorometric zearalenone assay using a lighting-up silver nanocluster probe and catalyzed by a hairpin assembly. Yin N; Yuan S; Zhang M; Wang J; Li Y; Peng Y; Bai J; Ning B; Liang J; Gao Z Mikrochim Acta; 2019 Nov; 186(12):765. PubMed ID: 31713694 [TBL] [Abstract][Full Text] [Related]
11. Rapid simultaneous quantification of zearalenone and fumonisin B1 in corn and wheat by lateral flow dual immunoassay. Wang YK; Yan YX; Ji WH; Wang HA; Li SQ; Zou Q; Sun JH J Agric Food Chem; 2013 May; 61(21):5031-6. PubMed ID: 23650935 [TBL] [Abstract][Full Text] [Related]
12. A novel bioassay based on aptamer-functionalized magnetic nanoparticle for the detection of zearalenone using time resolved-fluorescence NaYF Niazi S; Wang X; Pasha I; Khan IM; Zhao S; Shoaib M; Wu S; Wang Z Talanta; 2018 Aug; 186():97-103. PubMed ID: 29784425 [TBL] [Abstract][Full Text] [Related]
13. Development of an immunochromatographic test strip for simultaneous qualitative and quantitative detection of ochratoxin A and zearalenone in cereal. Sun Y; Xing G; Yang J; Wang F; Deng R; Zhang G; Hu X; Zhang Y J Sci Food Agric; 2016 Aug; 96(11):3673-8. PubMed ID: 26612142 [TBL] [Abstract][Full Text] [Related]
14. An enhanced enzyme-linked aptamer assay for the detection of zearalenone based on gold nanoparticles. Sun S; Xie Y Anal Methods; 2021 Mar; 13(10):1255-1260. PubMed ID: 33616132 [TBL] [Abstract][Full Text] [Related]
15. A sandwich dipstick assay for ATP detection based on split aptamer fragments. Zhu C; Zhao Y; Yan M; Huang Y; Yan J; Bai W; Chen A Anal Bioanal Chem; 2016 Jun; 408(15):4151-8. PubMed ID: 27052777 [TBL] [Abstract][Full Text] [Related]
16. Development of a high sensitivity quantum dot-based fluorescent quenching lateral flow assay for the detection of zearalenone. Chen Y; Fu Q; Xie J; Wang H; Tang Y Anal Bioanal Chem; 2019 Apr; 411(10):2169-2175. PubMed ID: 30820630 [TBL] [Abstract][Full Text] [Related]
17. A Novel Lateral Flow Immunochromatographic Assay for Rapid and Simultaneous Detection of Aflatoxin B1 and Zearalenone in Food and Feed Samples Based on Highly Sensitive and Specific Monoclonal Antibodies. Wang Y; Wang X; Wang S; Fotina H; Wang Z Toxins (Basel); 2022 Sep; 14(9):. PubMed ID: 36136553 [TBL] [Abstract][Full Text] [Related]
18. A bimetallic organic framework based fluorescent aptamer probe for the detection of zearalenone in cereals. Zhu L; Liu W; Tong F; Zhang S; Xu Y; Hu Y; Zheng M; Zhou Y; Zhang Z; Li X; Liu Y Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 306():123628. PubMed ID: 37950933 [TBL] [Abstract][Full Text] [Related]
19. Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat, and feed samples. Zhang X; He K; Fang Y; Cao T; Paudyal N; Zhang XF; Song HH; Li XL; Fang WH J Zhejiang Univ Sci B; 2018 Nov.; 19(11):871-883. PubMed ID: 30387337 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of pioneering 3D sakura-shaped metal-organic coordination polymers Cu@L-Glu phenomenal for signal amplification in highly sensitive detection of zearalenone. Ji X; Yu C; Wen Y; Chen J; Yu Y; Zhang C; Gao R; Mu X; He J Biosens Bioelectron; 2019 Mar; 129():139-146. PubMed ID: 30690178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]