These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29425047)

  • 1. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.
    Kalonia CK; Heinrich F; Curtis JE; Raman S; Miller MA; Hudson SD
    Mol Pharm; 2018 Mar; 15(3):1319-1331. PubMed ID: 29425047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of the Metal Interface on the Stability and Quality of a Therapeutic Fusion Protein.
    Defante AP; Kalonia CK; Keegan E; Bishop SM; Satish HA; Hudson SD; Santacroce PV
    Mol Pharm; 2020 Feb; 17(2):569-578. PubMed ID: 31917583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Adsorption Controls Particle Formation in Antibody Formulations Subjected to Extensional Flows and Hydrodynamic Shear.
    Thite NG; Ghazvini S; Wallace N; Feldman N; Calderon CP; Randolph TW
    J Pharm Sci; 2023 Nov; 112(11):2766-2777. PubMed ID: 37453529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Neutron Reflectometry to Discern the Structure of Fibrinogen Adsorption at the Stainless Steel/Aqueous Interface.
    Wood MH; Browning KL; Barker RD; Clarke SM
    J Phys Chem B; 2016 Jun; 120(24):5405-16. PubMed ID: 27244444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation of a monoclonal antibody induced by adsorption to stainless steel.
    Bee JS; Davis M; Freund E; Carpenter JF; Randolph TW
    Biotechnol Bioeng; 2010 Jan; 105(1):121-9. PubMed ID: 19725039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bovine Serum Albumin and Fibrinogen Adsorption at the 316L Stainless Steel/Aqueous Interface.
    Wood MH; Payagalage CG; Geue T
    J Phys Chem B; 2018 May; 122(19):5057-5065. PubMed ID: 29709171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoclonal antibody interactions with micro- and nanoparticles: adsorption, aggregation, and accelerated stress studies.
    Bee JS; Chiu D; Sawicki S; Stevenson JL; Chatterjee K; Freund E; Carpenter JF; Randolph TW
    J Pharm Sci; 2009 Sep; 98(9):3218-38. PubMed ID: 19492408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles.
    Tyagi AK; Randolph TW; Dong A; Maloney KM; Hitscherich C; Carpenter JF
    J Pharm Sci; 2009 Jan; 98(1):94-104. PubMed ID: 18454482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.
    Ghazvini S; Kalonia C; Volkin DB; Dhar P
    J Pharm Sci; 2016 May; 105(5):1643-1656. PubMed ID: 27025981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of adsorption behaviors of bovine serum albumin onto a stainless steel surface by the quartz crystal microbalance based on admittance analysis.
    Hagiwara T; Nattawut P; Shibata M; Sakiyama T
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):783-789. PubMed ID: 28110631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution.
    Nayak A; Colandene J; Bradford V; Perkins M
    J Pharm Sci; 2011 Oct; 100(10):4198-204. PubMed ID: 21698601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of a concentrated monoclonal antibody formulation to high shear.
    Bee JS; Stevenson JL; Mehta B; Svitel J; Pollastrini J; Platz R; Freund E; Carpenter JF; Randolph TW
    Biotechnol Bioeng; 2009 Aug; 103(5):936-43. PubMed ID: 19370772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Protein Particle Formation in IgG1 mAbs Formulated with PS20 Vs. PS80 When Subjected to Interfacial Dilatational Stress.
    Vaclaw C; Merritt K; Griffin VP; Whitaker N; Gokhale M; Volkin DB; Ogunyankin MO; Dhar P
    AAPS PharmSciTech; 2023 Apr; 24(5):104. PubMed ID: 37081185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies.
    Hollowell P; Li Z; Hu X; Ruane S; Kalonia C; van der Walle CF; Lu JR
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32353995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Changes in Adsorbed Cytochrome c upon Applied Potential Characterized by Neutron Reflectometry.
    Wood MH; Humphreys EK; Welbourn RJL
    Langmuir; 2019 May; 35(18):6055-6063. PubMed ID: 30966748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring and Characterization of Milk Fouling on Stainless Steel Using a High-Pressure High-Temperature Quartz Crystal Microbalance with Dissipation.
    Huellemeier HA; Eren NM; Payne TD; Schultz ZD; Heldman DR
    Langmuir; 2022 Aug; 38(31):9466-9480. PubMed ID: 35899940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Passive Microrheology to Measure the Evolution of the Rheological Properties of NIST mAb Formulations during Adsorption to the Air-Water Interface.
    Escobar ELN; Vaclaw MC; Lozenski JT; Dhar P
    Langmuir; 2024 Mar; 40(9):4789-4800. PubMed ID: 38379175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filling of High-Concentration Monoclonal Antibody Formulations into Pre-filled Syringes: Investigating Formulation-Nozzle Interactions To Minimize Nozzle Clogging.
    Shieu W; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(3):417-26. PubMed ID: 26048747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.