These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 29425200)
1. An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates. Alderton S; Macleod ET; Anderson NE; Palmer G; Machila N; Simuunza M; Welburn SC; Atkinson PM PLoS Negl Trop Dis; 2018 Feb; 12(2):e0006188. PubMed ID: 29425200 [TBL] [Abstract][Full Text] [Related]
2. A Multi-Host Agent-Based Model for a Zoonotic, Vector-Borne Disease. A Case Study on Trypanosomiasis in Eastern Province, Zambia. Alderton S; Macleod ET; Anderson NE; Schaten K; Kuleszo J; Simuunza M; Welburn SC; Atkinson PM PLoS Negl Trop Dis; 2016 Dec; 10(12):e0005252. PubMed ID: 28027323 [TBL] [Abstract][Full Text] [Related]
3. Exploring the effect of human and animal population growth on vector-borne disease transmission with an agent-based model of Rhodesian human African trypanosomiasis in eastern province, Zambia. Alderton S; Macleod ET; Anderson NE; Machila N; Simuunza M; Welburn SC; Atkinson PM PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006905. PubMed ID: 30408045 [TBL] [Abstract][Full Text] [Related]
4. Impact of mass chemotherapy in domestic livestock for control of zoonotic T. b. rhodesiense human African trypanosomiasis in Eastern Uganda. Fyfe J; Picozzi K; Waiswa C; Bardosh KL; Welburn SC Acta Trop; 2017 Jan; 165():216-229. PubMed ID: 27570206 [TBL] [Abstract][Full Text] [Related]
5. Sleeping sickness and tsetse awareness: a sociological study among the Tambo and Lambya of the northern Luangwa Valley, Zambia. Kaona FA; Masaninga F; Rickman LR; Mukunyandela M Cent Afr J Med; 1991 Sep; 37(9):298-301. PubMed ID: 1807810 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the impact of targeting livestock for the prevention of human and animal trypanosomiasis, at village level, in districts newly affected with T. b. rhodesiense in Uganda. Hamill L; Picozzi K; Fyfe J; von Wissmann B; Wastling S; Wardrop N; Selby R; Acup CA; Bardosh KL; Muhanguzi D; Kabasa JD; Waiswa C; Welburn SC Infect Dis Poverty; 2017 Feb; 6(1):16. PubMed ID: 28162093 [TBL] [Abstract][Full Text] [Related]
7. Priorities for the elimination of sleeping sickness. Welburn SC; Maudlin I Adv Parasitol; 2012; 79():299-337. PubMed ID: 22726645 [TBL] [Abstract][Full Text] [Related]
8. Modelling the impact of climate change on the distribution and abundance of tsetse in Northern Zimbabwe. Longbottom J; Caminade C; Gibson HS; Weiss DJ; Torr S; Lord JS Parasit Vectors; 2020 Oct; 13(1):526. PubMed ID: 33076987 [TBL] [Abstract][Full Text] [Related]
9. Potential impacts of climate change on geographical distribution of three primary vectors of African Trypanosomiasis in Tanzania's Maasai Steppe: G. m. morsitans, G. pallidipes and G. swynnertoni. Nnko HJ; Gwakisa PS; Ngonyoka A; Sindato C; Estes AB PLoS Negl Trop Dis; 2021 Feb; 15(2):e0009081. PubMed ID: 33571190 [TBL] [Abstract][Full Text] [Related]
10. Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in tsetse in Serengeti, Tanzania. Auty HK; Picozzi K; Malele I; Torr SJ; Cleaveland S; Welburn S PLoS Negl Trop Dis; 2012 Jan; 6(1):e1501. PubMed ID: 22303496 [TBL] [Abstract][Full Text] [Related]
11. Modelling the use of insecticide-treated cattle to control tsetse and Trypanosoma brucei rhodesiense in a multi-host population. Kajunguri D; Hargrove JW; Ouifki R; Mugisha JY; Coleman PG; Welburn SC Bull Math Biol; 2014 Mar; 76(3):673-96. PubMed ID: 24584715 [TBL] [Abstract][Full Text] [Related]
12. Mortality rates and population density of tsetse flies correlated with satellite imagery. Rogers DJ; Randolph SE Nature; 1991 Jun; 351(6329):739-41. PubMed ID: 2062367 [TBL] [Abstract][Full Text] [Related]
13. Host-seeking efficiency can explain population dynamics of the tsetse fly Glossina morsitans morsitans in response to host density decline. Lord JS; Mthombothi Z; Lagat VK; Atuhaire F; Hargrove JW PLoS Negl Trop Dis; 2017 Jul; 11(7):e0005730. PubMed ID: 28672001 [TBL] [Abstract][Full Text] [Related]
14. Trypanosome infection rates in tsetse flies in the "silent" sleeping sickness focus of Bafia in the Centre Region in Cameroon. Simo G; Fongho P; Farikou O; Ndjeuto-Tchouli PI; Tchouomene-Labou J; Njiokou F; Asonganyi T Parasit Vectors; 2015 Oct; 8():528. PubMed ID: 26458386 [TBL] [Abstract][Full Text] [Related]
16. Sleeping sickness and the factors affecting it in Botswana. Davies JE J Trop Med Hyg; 1982 Apr; 85(2):63-71. PubMed ID: 7086926 [TBL] [Abstract][Full Text] [Related]
17. Spatio-temporal distribution of tsetse and other biting flies in the Mouhoun River basin, Burkina Faso. Koné N; N'goran EK; Sidibe I; Kombassere AW; Bouyer J Med Vet Entomol; 2011 Jun; 25(2):156-68. PubMed ID: 21198714 [TBL] [Abstract][Full Text] [Related]
18. Satellites, space, time and the African trypanosomiases. Rogers DJ Adv Parasitol; 2000; 47():129-71. PubMed ID: 10997206 [TBL] [Abstract][Full Text] [Related]
19. Impact of habitat fragmentation on tsetse populations and trypanosomosis risk in Eastern Zambia. Mweempwa C; Marcotty T; De Pus C; Penzhorn BL; Dicko AH; Bouyer J; De Deken R Parasit Vectors; 2015 Aug; 8():406. PubMed ID: 26238201 [TBL] [Abstract][Full Text] [Related]
20. Satellite-based modelling of potential tsetse (Glossina pallidipes) breeding and foraging sites using teneral and non-teneral fly occurrence data. Gachoki S; Groen T; Vrieling A; Okal M; Skidmore A; Masiga D Parasit Vectors; 2021 Sep; 14(1):506. PubMed ID: 34583766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]