These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 2942542)

  • 1. Association of the S-100-related calpactin I light chain with the NH2-terminal tail of the 36-kDa heavy chain.
    Glenney JR; Boudreau M; Galyean R; Hunter T; Tack B
    J Biol Chem; 1986 Aug; 261(23):10485-8. PubMed ID: 2942542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibodies to the N-terminus of calpactin II (p35) affect Ca2+ binding and phosphorylation by the epidermal growth factor receptor in vitro.
    Glenney J; Zokas L
    Biochemistry; 1988 Mar; 27(6):2069-76. PubMed ID: 2454134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid-dependent Ca2+ binding by the 36-kDa tyrosine kinase substrate (calpactin) and its 33-kDa core.
    Glenney J
    J Biol Chem; 1986 Jun; 261(16):7247-52. PubMed ID: 2940239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calpactins: two distinct Ca++-regulated phospholipid- and actin-binding proteins isolated from lung and placenta.
    Glenney JR; Tack B; Powell MA
    J Cell Biol; 1987 Mar; 104(3):503-11. PubMed ID: 2950118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of calpactin I phospholipid binding by calpactin I light-chain binding and phosphorylation by p60v-src.
    Powell MA; Glenney JR
    Biochem J; 1987 Oct; 247(2):321-8. PubMed ID: 2962567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The calpactin light chain is tightly linked to the cytoskeletal form of calpactin I: studies using monoclonal antibodies to calpactin subunits.
    Zokas L; Glenney JR
    J Cell Biol; 1987 Nov; 105(5):2111-21. PubMed ID: 2960683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of a new member of the S100 protein family: amino acid sequence, tissue, and subcellular distribution.
    Glenney JR; Kindy MS; Zokas L
    J Cell Biol; 1989 Feb; 108(2):569-78. PubMed ID: 2521861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic fragmentation of brain myosin and localisation of the heavy-chain phosphorylation site.
    Barylko B; Tooth P; Kendrick-Jones J
    Eur J Biochem; 1986 Jul; 158(2):271-82. PubMed ID: 3488210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stimulatory effect of calpactin (annexin II) on calcium-dependent exocytosis in chromaffin cells: requirement for both the N-terminal and core domains of p36 and ATP.
    Ali SM; Burgoyne RD
    Cell Signal; 1990; 2(3):265-76. PubMed ID: 2144764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two related but distinct forms of the Mr 36,000 tyrosine kinase substrate (calpactin) that interact with phospholipid and actin in a Ca2+-dependent manner.
    Glenney J
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4258-62. PubMed ID: 3012561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium.
    Drust DS; Creutz CE
    Nature; 1988 Jan; 331(6151):88-91. PubMed ID: 2963226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited tryptic digestion of Acanthamoeba myosin IA abolishes regulation of actin-activated ATPase activity by heavy chain phosphorylation.
    Lynch TJ; Brzeska H; Korn ED
    J Biol Chem; 1987 Oct; 262(28):13842-9. PubMed ID: 2958454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary structure of bovine calpactin I heavy chain (p36), a major cellular substrate for retroviral protein-tyrosine kinases: homology with the human phospholipase A2 inhibitor lipocortin.
    Kristensen T; Saris CJ; Hunter T; Hicks LJ; Noonan DJ; Glenney JR; Tack BF
    Biochemistry; 1986 Aug; 25(16):4497-503. PubMed ID: 2945590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microinjection of antibodies to the calpactin I light chain in MDBK cells causes precipition of the cytoskeletal calpactin I complex without affecting the distribution of related proteins.
    Glenney JR
    Prog Clin Biol Res; 1990; 349():135-46. PubMed ID: 2144634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cDNA sequence for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain) reveals a multidomain protein with internal repeats.
    Saris CJ; Tack BF; Kristensen T; Glenney JR; Hunter T
    Cell; 1986 Jul; 46(2):201-12. PubMed ID: 3013423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-100 protein binds to annexin II and p11, the heavy and light chains of calpactin I.
    Bianchi R; Pula G; Ceccarelli P; Giambanco I; Donato R
    Biochim Biophys Acta; 1992 Nov; 1160(1):67-75. PubMed ID: 1420334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential subcellular distribution of p36 (the heavy chain of calpactin I) and other annexins in the adrenal medulla.
    Drust DS; Creutz CE
    J Neurochem; 1991 Feb; 56(2):469-78. PubMed ID: 1824861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localisation of light chain and actin binding sites on myosin.
    Mitchell EJ; Jakes R; Kendrick-Jones J
    Eur J Biochem; 1986 Nov; 161(1):25-35. PubMed ID: 3780739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino-terminal sequence of p36 and associated p10: identification of the site of tyrosine phosphorylation and homology with S-100.
    Glenney JR; Tack BF
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7884-8. PubMed ID: 2415974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of calpactins I and II and isolation of N-terminal tail of calpactin I.
    Glenney JR
    Methods Enzymol; 1991; 196():65-9. PubMed ID: 1827871
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.