BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1491 related articles for article (PubMed ID: 29425488)

  • 1. The Human Transcription Factors.
    Lambert SA; Jolma A; Campitelli LF; Das PK; Yin Y; Albu M; Chen X; Taipale J; Hughes TR; Weirauch MT
    Cell; 2018 Feb; 172(4):650-665. PubMed ID: 29425488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positional specificity of different transcription factor classes within enhancers.
    Grossman SR; Engreitz J; Ray JP; Nguyen TH; Hacohen N; Lander ES
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E7222-E7230. PubMed ID: 29987030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the evolution of transcription factor binding preferences in complex eukaryotes.
    Rosanova A; Colliva A; Osella M; Caselle M
    Sci Rep; 2017 Aug; 7(1):7596. PubMed ID: 28790414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence features of DNA binding sites reveal structural class of associated transcription factor.
    Narlikar L; Hartemink AJ
    Bioinformatics; 2006 Jan; 22(2):157-63. PubMed ID: 16267080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CrusTF: a comprehensive resource of transcriptomes for evolutionary and functional studies of crustacean transcription factors.
    Qin J; Hu Y; Ma KY; Jiang X; Ho CH; Tsang LM; Yi L; Leung RWT; Chu KH
    BMC Genomics; 2017 Nov; 18(1):908. PubMed ID: 29178828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes.
    Polak P; Domany E
    BMC Genomics; 2006 Jun; 7():133. PubMed ID: 16740159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities.
    Narasimhan K; Lambert SA; Yang AW; Riddell J; Mnaimneh S; Zheng H; Albu M; Najafabadi HS; Reece-Hoyes JS; Fuxman Bass JI; Walhout AJ; Weirauch MT; Hughes TR
    Elife; 2015 Apr; 4():. PubMed ID: 25905672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulators form diverse groups with context-dependent regulatory functions.
    Stampfel G; Kazmar T; Frank O; Wienerroither S; Reiter F; Stark A
    Nature; 2015 Dec; 528(7580):147-51. PubMed ID: 26550828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by
    Chumsakul O; Anantsri DP; Quirke T; Oshima T; Nakamura K; Ishikawa S; Nakano MM
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28439033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factors: specific DNA binding and specific gene regulation.
    Todeschini AL; Georges A; Veitia RA
    Trends Genet; 2014 Jun; 30(6):211-9. PubMed ID: 24774859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An equilibrium partitioning model connecting gene expression and cis-motif content.
    Mellor J; DeLisi C
    Bioinformatics; 2006 Jul; 22(14):e368-74. PubMed ID: 16873495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes.
    Kribelbauer JF; Rastogi C; Bussemaker HJ; Mann RS
    Annu Rev Cell Dev Biol; 2019 Oct; 35():357-379. PubMed ID: 31283382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites.
    Anderson DW; McKeown AN; Thornton JW
    Elife; 2015 Jun; 4():e07864. PubMed ID: 26076233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational identification of plant transcription factors and the construction of the PlantTFDB database.
    He K; Guo AY; Gao G; Zhu QH; Liu XC; Zhang H; Chen X; Gu X; Luo J
    Methods Mol Biol; 2010; 674():351-68. PubMed ID: 20827602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reassessing the "duon" hypothesis of protein evolution.
    Xing K; He X
    Mol Biol Evol; 2015 Apr; 32(4):1056-62. PubMed ID: 25582593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 75.