These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29425640)

  • 1. Prediction models to identify individuals at risk of metabolic syndrome who are unlikely to participate in a health intervention program.
    Shimoda A; Ichikawa D; Oyama H
    Int J Med Inform; 2018 Mar; 111():90-99. PubMed ID: 29425640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using machine-learning approaches to predict non-participation in a nationwide general health check-up scheme.
    Shimoda A; Ichikawa D; Oyama H
    Comput Methods Programs Biomed; 2018 Sep; 163():39-46. PubMed ID: 30119856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach.
    Ichikawa D; Saito T; Ujita W; Oyama H
    J Biomed Inform; 2016 Dec; 64():20-24. PubMed ID: 27658886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks.
    Choi BG; Rha SW; Kim SW; Kang JH; Park JY; Noh YK
    Yonsei Med J; 2019 Feb; 60(2):191-199. PubMed ID: 30666841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Non-invasive Parameters and Machine-Learning Algorithms for Predicting Future Risk of Type 2 Diabetes: A Retrospective Cohort Study of Health Data From Kuwait.
    Farran B; AlWotayan R; Alkandari H; Al-Abdulrazzaq D; Channanath A; Thanaraj TA
    Front Endocrinol (Lausanne); 2019; 10():624. PubMed ID: 31572303
    [No Abstract]   [Full Text] [Related]  

  • 6. Developing a Prediction Model for Pathologic Complete Response Following Neoadjuvant Chemotherapy in Breast Cancer: A Comparison of Model Building Approaches.
    Basmadjian RB; Kong S; Boyne DJ; Jarada TN; Xu Y; Cheung WY; Lupichuk S; Quan ML; Brenner DR
    JCO Clin Cancer Inform; 2022 Feb; 6():e2100055. PubMed ID: 35148170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced neonatal surgical site infection prediction model utilizing statistically and clinically significant variables in combination with a machine learning algorithm.
    Bartz-Kurycki MA; Green C; Anderson KT; Alder AC; Bucher BT; Cina RA; Jamshidi R; Russell RT; Williams RF; Tsao K
    Am J Surg; 2018 Oct; 216(4):764-777. PubMed ID: 30078669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of sex-specific hip fracture prediction models using electronic health records: a retrospective, population-based cohort study.
    Li GH; Cheung CL; Tan KC; Kung AW; Kwok TC; Lau WC; Wong JS; Hsu WWQ; Fang C; Wong IC
    EClinicalMedicine; 2023 Apr; 58():101876. PubMed ID: 36896245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods.
    Decruyenaere A; Decruyenaere P; Peeters P; Vermassen F; Dhaene T; Couckuyt I
    BMC Med Inform Decis Mak; 2015 Oct; 15():83. PubMed ID: 26466993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting post-stroke activities of daily living through a machine learning-based approach on initiating rehabilitation.
    Lin WY; Chen CH; Tseng YJ; Tsai YT; Chang CY; Wang HY; Chen CK
    Int J Med Inform; 2018 Mar; 111():159-164. PubMed ID: 29425627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melanoma risk prediction models.
    Nikolić J; Loncar-Turukalo T; Sladojević S; Marinković M; Janjić Z
    Vojnosanit Pregl; 2014 Aug; 71(8):757-66. PubMed ID: 25181836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing Machine Learning Algorithms for Predicting Acute Kidney Injury.
    Parreco J; Soe-Lin H; Parks JJ; Byerly S; Chatoor M; Buicko JL; Namias N; Rattan R
    Am Surg; 2019 Jul; 85(7):725-729. PubMed ID: 31405416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning model predicts airway stenosis requiring clinical intervention in patients after lung transplantation: a retrospective case-controlled study.
    Tian D; Zuo YJ; Yan HJ; Huang H; Liu MZ; Yang H; Zhao J; Shi LZ; Chen JY
    BMC Med Inform Decis Mak; 2024 Aug; 24(1):229. PubMed ID: 39160522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of fatty liver disease using machine learning algorithms.
    Wu CC; Yeh WC; Hsu WD; Islam MM; Nguyen PAA; Poly TN; Wang YC; Yang HC; Jack Li YC
    Comput Methods Programs Biomed; 2019 Mar; 170():23-29. PubMed ID: 30712601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries.
    Feng JZ; Wang Y; Peng J; Sun MW; Zeng J; Jiang H
    J Crit Care; 2019 Dec; 54():110-116. PubMed ID: 31408805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine learning approach for the prediction of pulmonary hypertension.
    Leha A; Hellenkamp K; Unsöld B; Mushemi-Blake S; Shah AM; Hasenfuß G; Seidler T
    PLoS One; 2019; 14(10):e0224453. PubMed ID: 31652290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicenter validation of a machine-learning algorithm for 48-h all-cause mortality prediction.
    Mohamadlou H; Panchavati S; Calvert J; Lynn-Palevsky A; Le S; Allen A; Pellegrini E; Green-Saxena A; Barton C; Fletcher G; Shieh L; Stark PB; Chettipally U; Shimabukuro D; Feldman M; Das R
    Health Informatics J; 2020 Sep; 26(3):1912-1925. PubMed ID: 31884847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards.
    Churpek MM; Yuen TC; Winslow C; Meltzer DO; Kattan MW; Edelson DP
    Crit Care Med; 2016 Feb; 44(2):368-74. PubMed ID: 26771782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of nationwide screening and lifestyle intervention for abdominal obesity and cardiometabolic risks in Japan: The metabolic syndrome and comprehensive lifestyle intervention study on nationwide database in Japan (MetS ACTION-J study).
    Nakao YM; Miyamoto Y; Ueshima K; Nakao K; Nakai M; Nishimura K; Yasuno S; Hosoda K; Ogawa Y; Itoh H; Ogawa H; Kangawa K; Nakao K
    PLoS One; 2018; 13(1):e0190862. PubMed ID: 29315322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Algorithm Identifies Patients at High Risk for Early Complications After Intracranial Tumor Surgery: Registry-Based Cohort Study.
    van Niftrik CHB; van der Wouden F; Staartjes VE; Fierstra J; Stienen MN; Akeret K; Sebök M; Fedele T; Sarnthein J; Bozinov O; Krayenbühl N; Regli L; Serra C
    Neurosurgery; 2019 Oct; 85(4):E756-E764. PubMed ID: 31149726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.