BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29425736)

  • 1. Targeted proteomics analyses of phosphorylation-dependent signalling networks.
    Banerjee SL; Dionne U; Lambert JP; Bisson N
    J Proteomics; 2018 Oct; 189():39-47. PubMed ID: 29425736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
    Vidova V; Spacil Z
    Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of SRM, MRM(3) , and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer.
    Schmidlin T; Garrigues L; Lane CS; Mulder TC; van Doorn S; Post H; de Graaf EL; Lemeer S; Heck AJ; Altelaar AF
    Proteomics; 2016 Aug; 16(15-16):2193-205. PubMed ID: 27219855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.
    Manes NP; Nita-Lazar A
    J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding signalling networks by mass spectrometry-based proteomics.
    Choudhary C; Mann M
    Nat Rev Mol Cell Biol; 2010 Jun; 11(6):427-39. PubMed ID: 20461098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-wide analysis of temporal phosphorylation dynamics in lysophosphatidic acid-induced signaling.
    Mäusbacher N; Schreiber TB; Machatti M; Schaab C; Daub H
    Proteomics; 2012 Dec; 12(23-24):3485-98. PubMed ID: 23090842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.
    Woo J; Han D; Wang JI; Park J; Kim H; Kim Y
    J Proteome Res; 2017 Sep; 16(9):3419-3432. PubMed ID: 28777000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics.
    Ronsein GE; Pamir N; von Haller PD; Kim DS; Oda MN; Jarvik GP; Vaisar T; Heinecke JW
    J Proteomics; 2015 Jan; 113():388-99. PubMed ID: 25449833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in targeted proteomics and applications to biomedical research.
    Shi T; Song E; Nie S; Rodland KD; Liu T; Qian WJ; Smith RD
    Proteomics; 2016 Aug; 16(15-16):2160-82. PubMed ID: 27302376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification-specific proteomics in plant biology.
    Ytterberg AJ; Jensen ON
    J Proteomics; 2010 Oct; 73(11):2249-66. PubMed ID: 20541636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Quantitation of cellular phosphorylation dynamics by phosphoproteomics approaches].
    Ishihama Y; Imami K
    Yakugaku Zasshi; 2014; 134(4):521-7. PubMed ID: 24694813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research.
    Chan CY; Gritsenko MA; Smith RD; Qian WJ
    Expert Rev Proteomics; 2016; 13(4):421-33. PubMed ID: 26960075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant hormone signalling through the eye of the mass spectrometer.
    Walton A; Stes E; De Smet I; Goormachtig S; Gevaert K
    Proteomics; 2015 Mar; 15(5-6):1113-26. PubMed ID: 25404421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry.
    Pflieger D; Gonnet F; de la Fuente van Bentem S; Hirt H; de la Fuente A
    Mass Spectrom Rev; 2011; 30(2):268-97. PubMed ID: 21337599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and computational tools useful for (re)construction of dynamic kinase-substrate networks.
    Tan CS; Linding R
    Proteomics; 2009 Dec; 9(23):5233-42. PubMed ID: 19834900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity.
    Ringrose JH; van den Toorn HW; Eitel M; Post H; Neerincx P; Schierwater B; Altelaar AF; Heck AJ
    Nat Commun; 2013; 4():1408. PubMed ID: 23360999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Circadian proteomics].
    Gachon F
    Biol Aujourdhui; 2018; 212(3-4):55-59. PubMed ID: 30973132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing phosphorylation signalling networks from quantitative phosphoproteomic data.
    Invergo BM; Beltrao P
    Essays Biochem; 2018 Oct; 62(4):525-534. PubMed ID: 30072490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the Post-translational Proteome with Intrabodies.
    Cattaneo A; Chirichella M
    Trends Biotechnol; 2019 Jun; 37(6):578-591. PubMed ID: 30577991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.
    Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B
    J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.