BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 29425855)

  • 1. Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles.
    Moghal MMR; Islam MZ; Sharmin S; Levadnyy V; Moniruzzaman M; Yamazaki M
    Chem Phys Lipids; 2018 May; 212():120-129. PubMed ID: 29425855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores.
    Islam MZ; Ariyama H; Alam JM; Yamazaki M
    Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles.
    Shuma ML; Moghal MMR; Yamazaki M
    Biochemistry; 2020 May; 59(18):1780-1790. PubMed ID: 32285663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Mechanical Properties of Lipid Bilayers on the Entry of Cell-Penetrating Peptides into Single Vesicles.
    Islam MZ; Sharmin S; Levadnyy V; Alam Shibly SU; Yamazaki M
    Langmuir; 2017 Mar; 33(9):2433-2443. PubMed ID: 28166411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Membrane Potential on Entry of Cell-Penetrating Peptide Transportan 10 into Single Vesicles.
    Moghal MMR; Islam MZ; Hossain F; Saha SK; Yamazaki M
    Biophys J; 2020 Jan; 118(1):57-69. PubMed ID: 31810658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single GUV Method for Revealing the Action of Cell-Penetrating Peptides in Biomembranes.
    Moghal MMR; Shuma ML; Islam MZ; Yamazaki M
    Methods Mol Biol; 2022; 2383():167-179. PubMed ID: 34766289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elementary processes of antimicrobial peptide PGLa-induced pore formation in lipid bilayers.
    Parvez F; Alam JM; Dohra H; Yamazaki M
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2262-2271. PubMed ID: 30409522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation of the nonlabeled antimicrobial peptide PGLa across lipid bilayers and its entry into vesicle lumens without pore formation.
    Ali MH; Shuma ML; Dohra H; Yamazaki M
    Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183680. PubMed ID: 34153295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of membrane tension in the action of antimicrobial peptides and cell-penetrating peptides in biomembranes.
    Hasan M; Moghal MMR; Saha SK; Yamazaki M
    Biophys Rev; 2019 Jun; 11(3):431-448. PubMed ID: 31093936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
    Moniruzzaman M; Alam JM; Dohra H; Yamazaki M
    Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entry of a Six-Residue Antimicrobial Peptide Derived from Lactoferricin B into Single Vesicles and Escherichia coli Cells without Damaging their Membranes.
    Moniruzzaman M; Islam MZ; Sharmin S; Dohra H; Yamazaki M
    Biochemistry; 2017 Aug; 56(33):4419-4431. PubMed ID: 28752991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of membrane potential on pore formation by the antimicrobial peptide magainin 2 in lipid bilayers.
    Rashid MMO; Moghal MMR; Billah MM; Hasan M; Yamazaki M
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183381. PubMed ID: 32504547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells.
    Islam MZ; Sharmin S; Moniruzzaman M; Yamazaki M
    Appl Microbiol Biotechnol; 2018 May; 102(9):3879-3892. PubMed ID: 29523934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability.
    Tamba Y; Yamazaki M
    Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane potential is vital for rapid permeabilization of plasma membranes and lipid bilayers by the antimicrobial peptide lactoferricin B.
    Hossain F; Moghal MMR; Islam MZ; Moniruzzaman M; Yamazaki M
    J Biol Chem; 2019 Jul; 294(27):10449-10462. PubMed ID: 31118274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface.
    Tamba Y; Yamazaki M
    J Phys Chem B; 2009 Apr; 113(14):4846-52. PubMed ID: 19267489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature.
    Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S
    Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of stearyl and trifluoromethylquinoline modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane.
    Anko M; Majhenc J; Kogej K; Sillard R; Langel U; Anderluh G; Zorko M
    Biochim Biophys Acta; 2012 Mar; 1818(3):915-24. PubMed ID: 22240008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.