These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29425863)

  • 1. In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.
    Wang Z; Yang K; Li H; Yuan C; Zhu X; Huang H; Wang Y; Su L; Fang Y
    Int J Biol Macromol; 2018 Jun; 112():803-808. PubMed ID: 29425863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ observation of heat- and pressure-induced gelation of methylcellulose by fluorescence measurement.
    Su L; Wang Z; Yang K; Minamikawa Y; Kometani N; Nishinari K
    Int J Biol Macromol; 2014 Mar; 64():409-14. PubMed ID: 24361668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.
    Kometani N; Tanabe M; Su L; Yang K; Nishinari K
    J Phys Chem B; 2015 Jun; 119(22):6878-83. PubMed ID: 25984597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ observation of gelation of methylcellulose aqueous solution with viscosity measuring instrument in the diamond anvil cell.
    Wang Z; Yang K; Li H; Yuan C; Zhu X; Huang H; Wang Y; Su L; Nishinari K; Fang Y
    Carbohydr Polym; 2018 Jun; 190():190-195. PubMed ID: 29628237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique gelation behavior of cellulose in NaOH/urea aqueous solution.
    Cai J; Zhang L
    Biomacromolecules; 2006 Jan; 7(1):183-9. PubMed ID: 16398514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sol/gel transition of chitosan solutions.
    Rwei SP; Chen TY; Cheng YY
    J Biomater Sci Polym Ed; 2005; 16(11):1433-45. PubMed ID: 16370243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic liquefaction of agarose above the sol-gel transition temperature using a thermostable endo-type β-agarase, Aga16B.
    Kim JH; Yun EJ; Seo N; Yu S; Kim DH; Cho KM; An HJ; Kim JH; Choi IG; Kim KH
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1111-1120. PubMed ID: 27664160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers.
    Tanaka F; Koga T; Kaneda I; Winnik FM
    J Phys Condens Matter; 2011 Jul; 23(28):284105. PubMed ID: 21709330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic viscoelastic properties of cellulose carbamate dissolved in NaOH aqueous solution.
    Guo Y; Zhou J; Zhang L
    Biomacromolecules; 2011 May; 12(5):1927-34. PubMed ID: 21476547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution and rheological behavior of deacetylated konjac glucomannan in urea aqueous solution.
    Wang S; Zhan Y; Wu X; Ye T; Li Y; Wang L; Chen Y; Li B
    Carbohydr Polym; 2014 Jan; 101():499-504. PubMed ID: 24299804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal phase transitions of agarose in various compositions: a fluorescence study.
    Kara S; Arda E; Dolastir F; Pekcan Ö
    J Fluoresc; 2011 Sep; 21(5):1871-7. PubMed ID: 21451985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).
    Jin N; Zhang H; Jin S; Dadmun MD; Zhao B
    J Phys Chem B; 2012 Mar; 116(10):3125-37. PubMed ID: 22352399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of sucrose on the sol-gel phase transition and viscoelastic properties of potato starch solutions.
    Owczarz P; Orczykowska M; Rył A; Ziółkowski P
    Food Chem; 2019 Jan; 271():94-101. PubMed ID: 30236747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topology evolution and gelation mechanism of agarose gel.
    Xiong JY; Narayanan J; Liu XY; Chong TK; Chen SB; Chung TS
    J Phys Chem B; 2005 Mar; 109(12):5638-43. PubMed ID: 16851608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency- and temperature-dependent rheological properties of an amphiphilic block co-polymer in water and including cell-culture media.
    Zhang H; Ding J
    J Biomater Sci Polym Ed; 2010; 21(2):253-69. PubMed ID: 20092688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.
    Garai A; Nandi AK
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1842-51. PubMed ID: 18572585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metastability of nematic gels made of aqueous chitin nanocrystal dispersions.
    Tzoumaki MV; Moschakis T; Biliaderis CG
    Biomacromolecules; 2010 Jan; 11(1):175-81. PubMed ID: 19947640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermorheologic properties of aqueous solutions and gels of Tetronic 1508.
    Spancake CW; Kildsig DO; Mitra AK
    Pharm Res; 1991 Mar; 8(3):345-9. PubMed ID: 2052522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local and network structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) and methylated alpha-cyclodextrins.
    Kataoka T; Kidowaki M; Zhao C; Minamikawa H; Shimizu T; Ito K
    J Phys Chem B; 2006 Dec; 110(48):24377-83. PubMed ID: 17134190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local and average diffusion of nanosolutes in agarose gel: the effect of the gel/solution interface structure.
    Labille J; Fatin-Rouge N; Buffle J
    Langmuir; 2007 Feb; 23(4):2083-90. PubMed ID: 17279699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.