These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29425969)

  • 1. Fast and robust segmentation of white blood cell images by self-supervised learning.
    Zheng X; Wang Y; Wang G; Liu J
    Micron; 2018 Apr; 107():55-71. PubMed ID: 29425969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.
    Abdulhay E; Mohammed MA; Ibrahim DA; Arunkumar N; Venkatraman V
    J Med Syst; 2018 Feb; 42(4):58. PubMed ID: 29455440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image segmentation and classification of white blood cells with the extreme learning machine and the fast relevance vector machine.
    Ravikumar S
    Artif Cells Nanomed Biotechnol; 2016 May; 44(3):985-9. PubMed ID: 25707440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners.
    Opbroek AV; Vernooij MW; Ikram MA; Bruijne M
    Med Image Anal; 2015 Aug; 24(1):245-254. PubMed ID: 26210914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware.
    Şişik F; Sert E
    Med Hypotheses; 2020 Mar; 136():109507. PubMed ID: 31812927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and segmentation of virus plaque using HOG and SVM: toward automatic plaque assay.
    Mao Y; Liu H; Ye R; Shi Y; Song Z
    Biomed Mater Eng; 2014; 24(6):3187-98. PubMed ID: 25227027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pixel-based color image segmentation using support vector machine and fuzzy C-means.
    Wang XY; Zhang XJ; Yang HY; Bu J
    Neural Netw; 2012 Sep; 33():148-59. PubMed ID: 22647833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color clustering and learning for image segmentation based on neural networks.
    Dong G; Xie M
    IEEE Trans Neural Netw; 2005 Jul; 16(4):925-36. PubMed ID: 16121733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised learning-based cell image segmentation for p53 immunohistochemistry.
    Mao KZ; Zhao P; Tan PH
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1153-63. PubMed ID: 16761842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies.
    Zhang K; Lu W; Marziliano P
    Magn Reson Imaging; 2013 Dec; 31(10):1731-43. PubMed ID: 23867282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of MR image segmentation techniques using pattern recognition.
    Bezdek JC; Hall LO; Clarke LP
    Med Phys; 1993; 20(4):1033-48. PubMed ID: 8413011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A supervised learning framework for pancreatic islet segmentation with multi-scale color-texture features and rolling guidance filters.
    Huang Y; Liu C; Eisses JF; Husain SZ; Rohde GK
    Cytometry A; 2016 Oct; 89(10):893-902. PubMed ID: 27560544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.
    Liu Z; Xu S; Zhang Y; Chen CL
    IEEE Trans Cybern; 2014 Nov; 44(11):2232-41. PubMed ID: 25248211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
    Qin F; Liu D; Sun B; Ruan L; Ma Z; Wang H
    PLoS One; 2016; 11(12):e0168274. PubMed ID: 27977767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining unsupervised constraints on weakly supervised semantic segmentation of skin cancer.
    Yan H; Wang P; Jia Y; Si X; Wei B
    Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39019048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Automatic and Robust Decision Support System for Accurate Acute Leukemia Diagnosis from Blood Microscopic Images.
    Moshavash Z; Danyali H; Helfroush MS
    J Digit Imaging; 2018 Oct; 31(5):702-717. PubMed ID: 29654425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined unsupervised-supervised classification of multiparametric PET/MRI data: application to prostate cancer.
    Gatidis S; Scharpf M; Martirosian P; Bezrukov I; Küstner T; Hennenlotter J; Kruck S; Kaufmann S; Schraml C; la Fougère C; Schwenzer NF; Schmidt H
    NMR Biomed; 2015 Jul; 28(7):914-22. PubMed ID: 26014883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charisma: an integrated approach to automatic H&E-stained skeletal muscle cell segmentation using supervised learning and novel robust clump splitting.
    Janssens T; Antanas L; Derde S; Vanhorebeek I; Van den Berghe G; Güiza Grandas F
    Med Image Anal; 2013 Dec; 17(8):1206-19. PubMed ID: 24012925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework.
    Rojas-Moraleda R; Xiong W; Halama N; Breitkopf-Heinlein K; Dooley S; Salinas L; Heermann DW; Valous NA
    Med Image Anal; 2017 May; 38():90-103. PubMed ID: 28314191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data.
    Gloger O; Tönnies K; Mensel B; Völzke H
    Phys Med Biol; 2015 Nov; 60(22):8675-93. PubMed ID: 26509325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.