BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 29426124)

  • 1. Spatial analysis of the risk to human health from exposure to arsenic contaminated groundwater: A kriging approach.
    Liang CP; Chen JS; Chien YC; Chen CF
    Sci Total Environ; 2018 Jun; 627():1048-1057. PubMed ID: 29426124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Analysis of Human Health Risk Due to Arsenic Exposure through Drinking Groundwater in Taiwan's Pingtung Plain.
    Liang CP; Chien YC; Jang CS; Chen CF; Chen JS
    Int J Environ Res Public Health; 2017 Jan; 14(1):. PubMed ID: 28098817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Machine Learning Approach for Spatial Mapping of the Health Risk Associated with Arsenic-Contaminated Groundwater in Taiwan's Lanyang Plain.
    Liang CP; Sun CC; Suk H; Wang SW; Chen JS
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan.
    Shahid M; Niazi NK; Dumat C; Naidu R; Khalid S; Rahman MM; Bibi I
    Environ Pollut; 2018 Nov; 242(Pt A):307-319. PubMed ID: 29990938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Health risk assessment of groundwater arsenic pollution in southern Taiwan.
    Liang CP; Wang SW; Kao YH; Chen JS
    Environ Geochem Health; 2016 Dec; 38(6):1271-1281. PubMed ID: 26817926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of geostatistics with Indicator Kriging for analyzing spatial variability of groundwater arsenic concentrations in Southwest Bangladesh.
    Hassan MM; Atkins PJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(11):1185-96. PubMed ID: 21879851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model.
    Lee JJ; Jang CS; Wang SW; Liu CW
    Sci Total Environ; 2007 Oct; 384(1-3):151-62. PubMed ID: 17628636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Appraising spatial variations of As, Fe, Mn and NO
    Ahmed N; Bodrud-Doza M; Towfiqul Islam ARM; Hossain S; Moniruzzaman M; Deb N; Bhuiyan MAQ
    Chemosphere; 2019 Mar; 218():726-740. PubMed ID: 30504048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential health risk assessment through ingestion and dermal contact arsenic-contaminated groundwater in Jianghan Plain, China.
    Li R; Kuo YM; Liu WW; Jang CS; Zhao E; Yao L
    Environ Geochem Health; 2018 Aug; 40(4):1585-1599. PubMed ID: 29392546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Principal Components Analysis and Kriging to Predict Groundwater-Sourced Rural Drinking Water Quality in Saskatchewan.
    McLeod L; Bharadwaj L; Epp T; Waldner CL
    Int J Environ Res Public Health; 2017 Sep; 14(9):. PubMed ID: 28914824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the probability of arsenic in groundwater using a parsimonious model.
    Lee JJ; Jang CS; Liu CW; Liang CP; Wang SW
    Environ Sci Technol; 2009 Sep; 43(17):6662-8. PubMed ID: 19764232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic contamination, subsequent water toxicity, and associated public health risks in the lower Indus plain, Sindh province, Pakistan.
    Shahab A; Qi S; Zaheer M
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):30642-30662. PubMed ID: 29916149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan).
    Liu CW; Jang CS; Liao CM
    Sci Total Environ; 2004 Apr; 321(1-3):173-88. PubMed ID: 15050394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain.
    Hu K; Huang Y; Li H; Li B; Chen D; White RE
    Environ Int; 2005 Aug; 31(6):896-903. PubMed ID: 16005970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management.
    Ducci D; de Melo MTC; Preziosi E; Sellerino M; Parrone D; Ribeiro L
    Sci Total Environ; 2016 Nov; 569-570():569-584. PubMed ID: 27371772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geospatial distribution of metal(loid)s and human health risk assessment due to intake of contaminated groundwater around an industrial hub of northern India.
    Kashyap R; Verma KS; Uniyal SK; Bhardwaj SK
    Environ Monit Assess; 2018 Feb; 190(3):136. PubMed ID: 29435679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic health risk assessment and the evaluation of groundwater quality using GWQI and multivariate statistical analysis in rural areas, Hashtroud, Iran.
    Sheikhi S; Faraji Z; Aslani H
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):3617-3631. PubMed ID: 32929669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental risk assessment of arsenic and fluoride in the Chaco Province, Argentina: research advances.
    Buchhamer EE; Blanes PS; Osicka RM; Giménez MC
    J Toxicol Environ Health A; 2012; 75(22-23):1437-50. PubMed ID: 23095162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain, Northeast China.
    Li D; Zhai Y; Lei Y; Li J; Teng Y; Lu H; Xia X; Yue W; Yang J
    Ecotoxicol Environ Saf; 2021 Jan; 208():111524. PubMed ID: 33129121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan.
    Lu KL; Liu CW; Jang CS
    Environ Monit Assess; 2012 Oct; 184(10):6071-85. PubMed ID: 22048921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.