These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29426218)

  • 61. Significance of pyrolytic temperature, application rate and incubation period of biochar in improving hydro-physical properties of calcareous sandy loam soil.
    Albalasmeh AA; Quzaih MZ; Gharaibeh MA; Rusan M; Mohawesh OE; Rababah SR; Alqudah A; Alghamdi AG; Naserin A
    Sci Rep; 2024 Mar; 14(1):7012. PubMed ID: 38528139
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bacterial Mobilization of Nutrients From Biochar-Amended Soils.
    Schmalenberger A; Fox A
    Adv Appl Microbiol; 2016; 94():109-59. PubMed ID: 26917243
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hardwood biochar and manure co-application to a calcareous soil.
    Ippolito JA; Stromberger ME; Lentz RD; Dungan RS
    Chemosphere; 2016 Jan; 142():84-91. PubMed ID: 26009473
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils.
    Ali N; Khan S; Li Y; Zheng N; Yao H
    Sci Total Environ; 2019 Jan; 647():551-560. PubMed ID: 30089277
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review.
    Liu Y; Lonappan L; Brar SK; Yang S
    Sci Total Environ; 2018 Dec; 645():60-70. PubMed ID: 30015119
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal saline-alkali soil.
    Tang J; Zhang S; Zhang X; Chen J; He X; Zhang Q
    Sci Total Environ; 2020 Aug; 731():138938. PubMed ID: 32408208
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Maturity indices in co-composting of chicken manure and sawdust with biochar.
    Khan N; Clark I; Sánchez-Monedero MA; Shea S; Meier S; Bolan N
    Bioresour Technol; 2014 Sep; 168():245-51. PubMed ID: 24666624
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure.
    Bruun S; Harmer SL; Bekiaris G; Christel W; Zuin L; Hu Y; Jensen LS; Lombi E
    Chemosphere; 2017 Feb; 169():377-386. PubMed ID: 27886540
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Suitability of marginal biomass-derived biochars for soil amendment.
    Buss W; Graham MC; Shepherd JG; Mašek O
    Sci Total Environ; 2016 Mar; 547():314-322. PubMed ID: 26789369
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties.
    Wystalska K; Kwarciak-Kozłowska A
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33801643
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature.
    Nzediegwu C; Arshad M; Ulah A; Naeth MA; Chang SX
    Bioresour Technol; 2021 Jan; 320(Pt A):124282. PubMed ID: 33120061
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Impact of Soil-Applied Biochars From Different Vegetal Feedstocks on Durum Wheat Plant Performance and Rhizospheric Bacterial Microbiota in Low Metal-Contaminated Soil.
    Latini A; Bacci G; Teodoro M; Gattia DM; Bevivino A; Trakal L
    Front Microbiol; 2019; 10():2694. PubMed ID: 31920998
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars.
    Uchimiya M; Cantrell KB; Hunt PG; Novak JM; Chang S
    J Environ Qual; 2012; 41(4):1138-49. PubMed ID: 22751056
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China.
    Zhang M; Cheng G; Feng H; Sun B; Zhao Y; Chen H; Chen J; Dyck M; Wang X; Zhang J; Zhang A
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10108-10120. PubMed ID: 28233202
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Co-composting of poultry manure mixtures amended with biochar - The effect of biochar on temperature and C-CO2 emission.
    Czekała W; Malińska K; Cáceres R; Janczak D; Dach J; Lewicki A
    Bioresour Technol; 2016 Jan; 200():921-7. PubMed ID: 26609949
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparative characterization of biochars produced at three selected pyrolysis temperatures from common woody and herbaceous waste streams.
    Askeland M; Clarke B; Paz-Ferreiro J
    PeerJ; 2019; 7():e6784. PubMed ID: 31024777
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process.
    Liu X; Li Z; Zhang Y; Feng R; Mahmood IB
    Waste Manag; 2014 Sep; 34(9):1619-26. PubMed ID: 24961565
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation.
    He D; Luo Y; Zhu B
    Sci Total Environ; 2024 Apr; 922():171259. PubMed ID: 38417524
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The potential value of biochar in the mitigation of gaseous emission of nitrogen.
    Thangarajan R; Bolan NS; Kunhikrishnan A; Wijesekara H; Xu Y; Tsang DCW; Song H; Ok YS; Hou D
    Sci Total Environ; 2018 Jan; 612():257-268. PubMed ID: 28850845
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Qualitative analysis of volatile organic compounds on biochar.
    Spokas KA; Novak JM; Stewart CE; Cantrell KB; Uchimiya M; Dusaire MG; Ro KS
    Chemosphere; 2011 Oct; 85(5):869-82. PubMed ID: 21788060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.