These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29426511)

  • 1. Speciation of inorganic arsenic(III) and arsenic(V) by a facile dual-cloud point extraction coupled with inductively plasma-optical emission spectrometry.
    Wen S; Zhu X
    Talanta; 2018 May; 181():265-270. PubMed ID: 29426511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples.
    Li Y; Hu B; Jiang Z
    Anal Chim Acta; 2006 Aug; 576(2):207-14. PubMed ID: 17723634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials.
    Jiang X; Wen S; Xiang G
    J Hazard Mater; 2010 Mar; 175(1-3):146-50. PubMed ID: 19853991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloud point extraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic selenium in environmental water samples.
    Chen B; Hu B; He M
    Rapid Commun Mass Spectrom; 2006; 20(19):2894-900. PubMed ID: 16941541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous speciation of inorganic arsenic, selenium and tellurium in environmental water samples by dispersive liquid liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry.
    Liu Y; He M; Chen B; Hu B
    Talanta; 2015 Sep; 142():213-20. PubMed ID: 26003714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hollow fiber liquid phase microextraction combined with electrothermal atomic absorption spectrometry for the speciation of arsenic (III) and arsenic (V) in fresh waters and human hair extracts.
    Jiang H; Hu B; Chen B; Xia L
    Anal Chim Acta; 2009 Feb; 634(1):15-21. PubMed ID: 19154804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and preconcentration of inorganic arsenic species in natural water samples with 3-(2-aminoethylamino) propyltrimethoxysilane modified ordered mesoporous silica micro-column and their determination by inductively coupled plasma optical emission spectrometry.
    Chen D; Huang C; He M; Hu B
    J Hazard Mater; 2009 May; 164(2-3):1146-51. PubMed ID: 18930593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.
    Herrero Latorre C; Barciela García J; García Martín S; Peña Crecente RM
    Anal Chim Acta; 2013 Dec; 804():37-49. PubMed ID: 24267061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation analysis of inorganic arsenic in natural water by carbon nanofibers separation and inductively coupled plasma mass spectrometry determination.
    Chen S; Zhan X; Lu D; Liu C; Zhu L
    Anal Chim Acta; 2009 Feb; 634(2):192-6. PubMed ID: 19185119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-line separation and preconcentration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry.
    Xiong C; He M; Hu B
    Talanta; 2008 Aug; 76(4):772-9. PubMed ID: 18656657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous speciation of inorganic selenium and antimony in water samples by electrothermal vaporization inductively coupled plasma mass spectrometry following selective cloud point extraction.
    Li Y; Hu B; He M; Xiang G
    Water Res; 2008 Feb; 42(4-5):1195-203. PubMed ID: 17904192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry.
    Zhao L; Zhong S; Fang K; Qian Z; Chen J
    J Hazard Mater; 2012 Nov; 239-240():206-12. PubMed ID: 22995204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic arsenic speciation in groundwater samples using electrothermal atomic spectrometry following selective separation and cloud point extraction.
    Baig JA; Kazi TG; Arain MB; Shah AQ; Kandhro GA; Afridi HI; Khan S; Kolachi NF; Wadhwa SK
    Anal Sci; 2011; 27(4):439. PubMed ID: 21478622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.
    Asadollahzadeh M; Tavakoli H; Torab-Mostaedi M; Hosseini G; Hemmati A
    Talanta; 2014 Jun; 123():25-31. PubMed ID: 24725860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation analysis of inorganic arsenic by magnetic solid phase extraction on-line with inductively coupled mass spectrometry determination.
    Montoro Leal P; Vereda Alonso E; López Guerrero MM; Cordero MTS; Cano Pavón JM; García de Torres A
    Talanta; 2018 Jul; 184():251-259. PubMed ID: 29674040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic solid phase extraction for the determination of trace antimony species in water by inductively coupled plasma mass spectrometry.
    Li P; Chen YJ; Hu X; Lian HZ
    Talanta; 2015 Mar; 134():292-297. PubMed ID: 25618670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous speciation analysis of inorganic arsenic, chromium and selenium in environmental waters by 3-(2-aminoethylamino) propyltrimethoxysilane modified multi-wall carbon nanotubes packed microcolumn solid phase extraction and ICP-MS.
    Peng H; Zhang N; He M; Chen B; Hu B
    Talanta; 2015 Jan; 131():266-72. PubMed ID: 25281102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters.
    Jiang HM; Yang T; Wang YH; Lian HZ; Hu X
    Talanta; 2013 Nov; 116():361-7. PubMed ID: 24148416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of (ultra)trace amounts of arsenic(III) and arsenic(V) in water by inductively coupled plasma mass spectrometry coupled with flow injection on-line sorption preconcentration and separation in a knotted reactor.
    Yan XP; Kerrich R; Hendry MJ
    Anal Chem; 1998 Nov; 70(22):4736-42. PubMed ID: 9844570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry.
    Shemirani F; Baghdadi M; Ramezani M
    Talanta; 2005 Feb; 65(4):882-7. PubMed ID: 18969883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.