BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29426833)

  • 1. Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA.
    Gregor C; Sidenstein SC; Andresen M; Sahl SJ; Danzl JG; Hell SW
    Sci Rep; 2018 Feb; 8(1):2724. PubMed ID: 29426833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins.
    Lavoie-Cardinal F; Jensen NA; Westphal V; Stiel AC; Chmyrov A; Bierwagen J; Testa I; Jakobs S; Hell SW
    Chemphyschem; 2014 Mar; 15(4):655-63. PubMed ID: 24449030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RESOLFT Nanoscopy of Fixed Cells Using a Z-Domain Based Fusion Protein for Labelling.
    Ilgen P; Grotjohann T; Jans DC; Kilisch M; Hell SW; Jakobs S
    PLoS One; 2015; 10(9):e0136233. PubMed ID: 26375606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Positive Switching Fluorescent Protein Padron2 Enables Live-Cell Reversible Saturable Optical Linear Fluorescence Transitions (RESOLFT) Nanoscopy without Sequential Illumination Steps.
    Konen T; Stumpf D; Grotjohann T; Jansen I; Bossi M; Weber M; Jensen N; Hell SW; Jakobs S
    ACS Nano; 2021 Jun; 15(6):9509-9521. PubMed ID: 34019380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy.
    Andresen M; Stiel AC; Fölling J; Wenzel D; Schönle A; Egner A; Eggeling C; Hell SW; Jakobs S
    Nat Biotechnol; 2008 Sep; 26(9):1035-40. PubMed ID: 18724362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromophore exchange in the blue light-sensitive photoreceptor YtvA from Bacillus subtilis.
    Mansurova M; Scheercousse P; Simon J; Kluth M; Gärtner W
    Chembiochem; 2011 Mar; 12(4):641-6. PubMed ID: 21259411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast reversibly photoswitching red fluorescent proteins for live-cell RESOLFT nanoscopy.
    Pennacchietti F; Serebrovskaya EO; Faro AR; Shemyakina II; Bozhanova NG; Kotlobay AA; Gurskaya NG; Bodén A; Dreier J; Chudakov DM; Lukyanov KA; Verkhusha VV; Mishin AS; Testa I
    Nat Methods; 2018 Aug; 15(8):601-604. PubMed ID: 29988095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LOV takes a pick: thermodynamic and structural aspects of the flavin-LOV-interaction of the blue-light sensitive photoreceptor YtvA from Bacillus subtilis.
    Dorn M; Jurk M; Wartenberg A; Hahn A; Schmieder P
    PLoS One; 2013; 8(11):e81268. PubMed ID: 24278408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual channel RESOLFT nanoscopy by using fluorescent state kinetics.
    Testa I; D'Este E; Urban NT; Balzarotti F; Hell SW
    Nano Lett; 2015 Jan; 15(1):103-6. PubMed ID: 25423166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. rsEGFP2 enables fast RESOLFT nanoscopy of living cells.
    Grotjohann T; Testa I; Reuss M; Brakemann T; Eggeling C; Hell SW; Jakobs S
    Elife; 2012 Dec; 1():e00248. PubMed ID: 23330067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the binding of BODIPY-GTP by the photosensory protein YtvA from the common soil bacterium Bacillus subtilis.
    Nakasone Y; Hellingwerf KJ
    Photochem Photobiol; 2011; 87(3):542-7. PubMed ID: 21388385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lighting Up Live Cells with Smart Genetically Encoded Fluorescence Probes from GMars Family.
    Wang S; Shuai Y; Sun C; Xue B; Hou Y; Su X; Sun Y
    ACS Sens; 2018 Nov; 3(11):2269-2277. PubMed ID: 30346738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan fluorescence in the Bacillus subtilis phototropin-related protein YtvA as a marker of interdomain interaction.
    Losi A; Ternelli E; Gärtner W
    Photochem Photobiol; 2004; 80():150-3. PubMed ID: 15339223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GMars-Q Enables Long-Term Live-Cell Parallelized Reversible Saturable Optical Fluorescence Transitions Nanoscopy.
    Wang S; Chen X; Chang L; Xue R; Duan H; Sun Y
    ACS Nano; 2016 Oct; 10(10):9136-9144. PubMed ID: 27541837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy.
    Stiel AC; Andresen M; Bock H; Hilbert M; Schilde J; Schönle A; Eggeling C; Egner A; Hell SW; Jakobs S
    Biophys J; 2008 Sep; 95(6):2989-97. PubMed ID: 18658221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.
    Zhang X; Zhang M; Li D; He W; Peng J; Betzig E; Xu P
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10364-9. PubMed ID: 27562163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-label in vivo STED microscopy by parallelized switching of reversibly switchable fluorescent proteins.
    Willig KI; Wegner W; Müller A; Calvet-Fournier V; Steffens H
    Cell Rep; 2021 Jun; 35(9):109192. PubMed ID: 34077731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen-bonding network.
    Raffelberg S; Mansurova M; Gärtner W; Losi A
    J Am Chem Soc; 2011 Apr; 133(14):5346-56. PubMed ID: 21410163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA.
    Möglich A; Moffat K
    J Mol Biol; 2007 Oct; 373(1):112-26. PubMed ID: 17764689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster.
    Schnorrenberg S; Grotjohann T; Vorbrüggen G; Herzig A; Hell SW; Jakobs S
    Elife; 2016 Jun; 5():. PubMed ID: 27355614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.