These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A theoretical insight into phonon heat transport in graphene/biphenylene superlattice nanoribbons: a molecular dynamic study. Farzadian O; Dehaghani MZ; Kostas KV; Mashhadzadeh AH; Spitas C Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 35613550 [TBL] [Abstract][Full Text] [Related]
3. Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice. Wang X; Wang M; Hong Y; Wang Z; Zhang J Phys Chem Chem Phys; 2017 Sep; 19(35):24240-24248. PubMed ID: 28848976 [TBL] [Abstract][Full Text] [Related]
5. First-Principles Study of the Transport Properties of Graphene-Hexagonal Boron Nitride Superlattice. Wang XM; Lu SS J Nanosci Nanotechnol; 2015 Apr; 15(4):3025-8. PubMed ID: 26353530 [TBL] [Abstract][Full Text] [Related]
6. Phonon transport and thermal conductivity of diamond superlattice nanowires: a comparative study with SiGe superlattice nanowires. Qu X; Gu J RSC Adv; 2020 Jan; 10(3):1243-1248. PubMed ID: 35494690 [TBL] [Abstract][Full Text] [Related]
7. Randomness-Induced Phonon Localization in Graphene Heat Conduction. Hu S; Zhang Z; Jiang P; Chen J; Volz S; Nomura M; Li B J Phys Chem Lett; 2018 Jul; 9(14):3959-3968. PubMed ID: 29968477 [TBL] [Abstract][Full Text] [Related]
8. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study. Wang X; Hong Y; Chan PKL; Zhang J Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215 [TBL] [Abstract][Full Text] [Related]
9. Si/Ge superlattice nanowires with ultralow thermal conductivity. Hu M; Poulikakos D Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Bi Roy Chowdhury P; Shi J; Feng T; Ruan X ACS Appl Mater Interfaces; 2021 Jan; 13(3):4636-4642. PubMed ID: 33433205 [TBL] [Abstract][Full Text] [Related]
11. Thermal transport of graphene-C Zhang G; Dong S; Wang X; Xin G Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37879323 [TBL] [Abstract][Full Text] [Related]
13. Thermal transport and phonon localization in periodic Chen J; Chen G; Wang Z J Phys Condens Matter; 2023 Oct; 36(4):. PubMed ID: 37852190 [TBL] [Abstract][Full Text] [Related]
14. Phonon thermal conductivity of the stanene/hBN van der Waals heterostructure. Rahman MH; Islam MS; Islam MS; Chowdhury EH; Bose P; Jayan R; Islam MM Phys Chem Chem Phys; 2021 May; 23(18):11028-11038. PubMed ID: 33942827 [TBL] [Abstract][Full Text] [Related]
15. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nika DL; Askerov AS; Balandin AA Nano Lett; 2012 Jun; 12(6):3238-44. PubMed ID: 22612247 [TBL] [Abstract][Full Text] [Related]
16. Tuning the Thermal Transport of Hexagonal Boron Nitride/Reduced Graphene Oxide Heterostructures. Chen SN; Liu XS; Luo RH; Xu EZ; Tian JG; Liu ZB ACS Appl Mater Interfaces; 2022 May; 14(19):22626-22633. PubMed ID: 35522991 [TBL] [Abstract][Full Text] [Related]
17. Strain-Engineering of Twist-Angle in Graphene/hBN Superlattice Devices. De Sanctis A; Mehew JD; Alkhalifa S; Withers F; Craciun MF; Russo S Nano Lett; 2018 Dec; 18(12):7919-7926. PubMed ID: 30474986 [TBL] [Abstract][Full Text] [Related]
18. Suppressed-to-enhanced thermal transport in a Fermi-Pasta-Ulam superlattice: Mediation roles of solitons and phonons. Wang J; Chen J Phys Rev E; 2020 Apr; 101(4-1):042207. PubMed ID: 32422702 [TBL] [Abstract][Full Text] [Related]
19. Thermal transport in hexagonal boron nitride nanoribbons. Ouyang T; Chen Y; Xie Y; Yang K; Bao Z; Zhong J Nanotechnology; 2010 Jun; 21(24):245701. PubMed ID: 20484794 [TBL] [Abstract][Full Text] [Related]
20. Complex temperature dependence of coherent and incoherent lattice thermal transport in superlattices. Chakraborty P; Chiu IA; Ma T; Wang Y Nanotechnology; 2021 Feb; 32(6):065401. PubMed ID: 33080574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]