BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 29426899)

  • 1. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases.
    Welch D; Buonanno M; Grilj V; Shuryak I; Crickmore C; Bigelow AW; Randers-Pehrson G; Johnson GW; Brenner DJ
    Sci Rep; 2018 Feb; 8(1):2752. PubMed ID: 29426899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses.
    Buonanno M; Welch D; Shuryak I; Brenner DJ
    Sci Rep; 2020 Jun; 10(1):10285. PubMed ID: 32581288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 222 nm far-UVC light markedly reduces the level of infectious airborne virus in an occupied room.
    Buonanno M; Kleiman NJ; Welch D; Hashmi R; Shuryak I; Brenner DJ
    Sci Rep; 2024 Mar; 14(1):6722. PubMed ID: 38509265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Far-UVC Light at 222 nm is Showing Significant Potential to Safely and Efficiently Inactivate Airborne Pathogens in Occupied Indoor Locations.
    Brenner DJ
    Photochem Photobiol; 2023; 99(3):1047-1050. PubMed ID: 36330967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens.
    Szeto W; Yam WC; Huang H; Leung DYC
    BMC Infect Dis; 2020 Feb; 20(1):127. PubMed ID: 32046660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UVC LED Irradiation Effectively Inactivates Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection System.
    Kim DK; Kang DH
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerosol susceptibility of influenza virus to UV-C light.
    McDevitt JJ; Rudnick SN; Radonovich LJ
    Appl Environ Microbiol; 2012 Mar; 78(6):1666-9. PubMed ID: 22226954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber.
    Eadie E; Hiwar W; Fletcher L; Tidswell E; O'Mahoney P; Buonanno M; Welch D; Adamson CS; Brenner DJ; Noakes C; Wood K
    Sci Rep; 2022 Mar; 12(1):4373. PubMed ID: 35322064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation Rates for Airborne Human Coronavirus by Low Doses of 222 nm Far-UVC Radiation.
    Welch D; Buonanno M; Buchan AG; Yang L; Atkinson KD; Shuryak I; Brenner DJ
    Viruses; 2022 Mar; 14(4):. PubMed ID: 35458414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Single-Pass Disinfection Performance of Far-UVC Light on Airborne Microorganisms in Duct Flows.
    Zhang H; Lai ACK
    Environ Sci Technol; 2022 Dec; 56(24):17849-17857. PubMed ID: 36469399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turn Up the Lights, Leave them On and Shine them All Around-Numerical Simulations Point the Way to more Efficient Use of Far-UVC Lights for the Inactivation of Airborne Coronavirus.
    Wood K; Wood A; Peñaloza C; Eadie E
    Photochem Photobiol; 2022 Mar; 98(2):471-483. PubMed ID: 34599612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Paradoxical Role of far-Ultraviolet C (far-UVC) in Inactivation of SARS-CoV-2: The Issue of Droplet Size.
    Karimpour M; Haghani M; Bevelacqua JJ; Welsh JS; Mortazavi SA; Mortazavi SMJ; Ghadimi-Moghadam A
    J Biomed Phys Eng; 2022 Oct; 12(5):535-538. PubMed ID: 36313407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelength-dependent DNA Photodamage in a 3-D human Skin Model over the Far-UVC and Germicidal UVC Wavelength Ranges from 215 to 255 nm.
    Welch D; Aquino de Muro M; Buonanno M; Brenner DJ
    Photochem Photobiol; 2022 Sep; 98(5):1167-1171. PubMed ID: 35104367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of poxviruses by upper-room UVC light in a simulated hospital room environment.
    McDevitt JJ; Milton DK; Rudnick SN; First MW
    PLoS One; 2008 Sep; 3(9):e3186. PubMed ID: 18781204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatial far-ultraviolet disinfection of exhaled bioaerosols in a mechanically ventilated space.
    Xia T; Guo K; Pan Y; An Y; Chen C
    J Hazard Mater; 2022 Aug; 436():129241. PubMed ID: 35739760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic evaluating and modeling of SARS-CoV-2 UVC disinfection.
    Freeman S; Kibler K; Lipsky Z; Jin S; German GK; Ye K
    Sci Rep; 2022 Apr; 12(1):5869. PubMed ID: 35393480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data.
    Hessling M; Haag R; Sieber N; Vatter P
    GMS Hyg Infect Control; 2021; 16():Doc07. PubMed ID: 33643774
    [No Abstract]   [Full Text] [Related]  

  • 18. Elevated Inactivation Efficacy of a Pulsed UVC Light-Emitting Diode System for Foodborne Pathogens on Selective Media and Food Surfaces.
    Kim DK; Kang DH
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 207-nm UV Light-A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies.
    Buonanno M; Stanislauskas M; Ponnaiya B; Bigelow AW; Randers-Pehrson G; Xu Y; Shuryak I; Smilenov L; Owens DM; Brenner DJ
    PLoS One; 2016; 11(6):e0138418. PubMed ID: 27275949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the effectiveness of bioaerosol disinfection in indoor environments by optimizing far-UVC lamp locations based on Markov chain model.
    Huang W; Guo K; Pan Y; Chen C
    Sci Total Environ; 2024 Feb; 912():168803. PubMed ID: 38000739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.