These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29426922)

  • 1. Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes.
    Li H; Aviran S
    Nat Commun; 2018 Feb; 9(1):606. PubMed ID: 29426922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rich RNA Structure Landscapes Revealed by Mutate-and-Map Analysis.
    Cordero P; Das R
    PLoS Comput Biol; 2015 Nov; 11(11):e1004473. PubMed ID: 26566145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-directed RNA secondary structure prediction using probabilistic modeling.
    Deng F; Ledda M; Vaziri S; Aviran S
    RNA; 2016 Aug; 22(8):1109-19. PubMed ID: 27251549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CONTRAfold: RNA secondary structure prediction without physics-based models.
    Do CB; Woods DA; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e90-8. PubMed ID: 16873527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():290-9. PubMed ID: 16448022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical mechanical modeling of RNA folding: from free energy landscape to tertiary structural prediction.
    Cao S; Chen SJ
    Nucleic Acids Mol Biol; 2012; 27():185-212. PubMed ID: 27293312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of RNA structures with chemical probing data.
    Ge P; Zhang S
    Methods; 2015 Jun; 79-80():60-6. PubMed ID: 25687190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.
    Piatkowski P; Kasprzak JM; Kumar D; Magnus M; Chojnowski G; Bujnicki JM
    Methods Mol Biol; 2016; 1490():217-35. PubMed ID: 27665602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new heuristic method for approximating the number of local minima in partial RNA energy landscapes.
    Albrecht AA; Day L; Abdelhadi Ep Souki O; Steinhöfel K
    Comput Biol Chem; 2016 Feb; 60():43-52. PubMed ID: 26657221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Publisher Correction: Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes.
    Li H; Aviran S
    Nat Commun; 2018 Mar; 9(1):1110. PubMed ID: 29535318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Method to Predict RNA Secondary Structure Based on RNA Folding Simulation.
    Liu Y; Zhao Q; Zhang H; Xu R; Li Y; Wei L
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):990-995. PubMed ID: 26552091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.
    Boniecki MJ; Lach G; Dawson WK; Tomala K; Lukasz P; Soltysinski T; Rother KM; Bujnicki JM
    Nucleic Acids Res; 2016 Apr; 44(7):e63. PubMed ID: 26687716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding in-line probing experiments by modeling cleavage of nonreactive RNA nucleotides.
    Mlýnský V; Bussi G
    RNA; 2017 May; 23(5):712-720. PubMed ID: 28202709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four RNA families with functional transient structures.
    Zhu JY; Meyer IM
    RNA Biol; 2015; 12(1):5-20. PubMed ID: 25751035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using sm-FRET and denaturants to reveal folding landscapes.
    Shaw E; St-Pierre P; McCluskey K; Lafontaine DA; Penedo JC
    Methods Enzymol; 2014; 549():313-41. PubMed ID: 25432755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data.
    Wu Y; Shi B; Ding X; Liu T; Hu X; Yip KY; Yang ZR; Mathews DH; Lu ZJ
    Nucleic Acids Res; 2015 Sep; 43(15):7247-59. PubMed ID: 26170232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure Prediction of RNA Loops with a Probabilistic Approach.
    Li J; Zhang J; Wang J; Li W; Wang W
    PLoS Comput Biol; 2016 Aug; 12(8):e1005032. PubMed ID: 27494763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy barriers, pathways, and dynamics during folding of large, multidomain RNAs.
    Shcherbakova I; Mitra S; Laederach A; Brenowitz M
    Curr Opin Chem Biol; 2008 Dec; 12(6):655-66. PubMed ID: 18926923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.