BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29427021)

  • 1. Estimating the densities of benzene-derived explosives using atomic volumes.
    Ghule VD; Nirwan A; Devi A
    J Mol Model; 2018 Feb; 24(3):50. PubMed ID: 29427021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of density prediction methods based on molecular surface electrostatic potential.
    Nirwan A; Devi A; Ghule VD
    J Mol Model; 2018 Jun; 24(7):166. PubMed ID: 29922916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of densities of acyclic and cyclic nitramines, nitrate esters and nitroaliphatic compounds for evaluation of their detonation performance.
    Keshavarz MH
    J Hazard Mater; 2007 May; 143(1-2):437-42. PubMed ID: 17052837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel method for predicting densities of polynitro arene and polynitro heteroarene explosives in order to evaluate their detonation performance.
    Keshavarz MH
    J Hazard Mater; 2009 Jun; 165(1-3):579-88. PubMed ID: 19059710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of the crystal densities of molecular salts and hydrates using additive volumes for charged groups.
    Beaucamp S; Marchet N; Mathieu D; Agafonov V
    Acta Crystallogr B; 2003 Aug; 59(Pt 4):498-504. PubMed ID: 12947235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quick estimation of heats of detonation of aromatic energetic compounds from structural parameters.
    Keshavarz MH
    J Hazard Mater; 2007 May; 143(1-2):549-54. PubMed ID: 17074439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of electrostatic descriptors for predicting crystalline density.
    Rice BM; Byrd EF
    J Comput Chem; 2013 Sep; 34(25):2146-51. PubMed ID: 23813635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-(3,5-Dinitro-1H-pyrazol-4-yl)-3-nitro-1H-1,2,4-triazol-5-amine (HCPT) and its energetic salts: highly thermally stable energetic materials with high-performance.
    Li C; Zhang M; Chen Q; Li Y; Gao H; Fu W; Zhou Z
    Dalton Trans; 2016 Nov; 45(44):17956-17965. PubMed ID: 27781234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inner hydrogen atom transfer in benzo-fused low symmetrical metal-free tetraazaporphyrin and phthalocyanine analogues: density functional theory studies.
    Qi D; Zhang Y; Cai X; Jiang J; Bai M
    J Mol Graph Model; 2009 Feb; 27(6):693-700. PubMed ID: 19097816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New method for calculating densities of nitroaromatic explosive compounds.
    Keshavarz MH
    J Hazard Mater; 2007 Jun; 145(1-2):263-9. PubMed ID: 17174024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate thermochemical properties for energetic materials applications. II. Heats of formation of imidazolium-, 1,2,4-triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations.
    Gutowski KE; Rogers RD; Dixon DA
    J Phys Chem B; 2007 May; 111(18):4788-800. PubMed ID: 17388432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reliable simple method to estimate density of nitroaliphatics, nitrate esters and nitramines.
    Keshavarz MH; Pouretedal HR
    J Hazard Mater; 2009 Sep; 169(1-3):158-69. PubMed ID: 19442437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate prediction of melting point of nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds.
    Keshavarz MH
    J Hazard Mater; 2006 Dec; 138(3):448-51. PubMed ID: 16839681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical prediction of the impact sensitivities of energetic C-nitro compounds.
    Chang SJ; Bai HL; Ren FD; Luo XC; Xu JJ
    J Mol Model; 2020 Jul; 26(8):219. PubMed ID: 32728987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitroguanidine-fused bicyclic guanidinium salts: a family of high-density energetic materials.
    Wang R; Guo Y; Sa R; Shreeve JM
    Chemistry; 2010 Jul; 16(28):8522-9. PubMed ID: 20564286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal density predictions for nitramines based on quantum chemistry.
    Qiu L; Xiao H; Gong X; Ju X; Zhu W
    J Hazard Mater; 2007 Mar; 141(1):280-8. PubMed ID: 16930828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,2,3-Triazolo[4,5,-e]furazano[3,4,-b]pyrazine 6-oxide--a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials.
    Thottempudi V; Yin P; Zhang J; Parrish DA; Shreeve JM
    Chemistry; 2014 Jan; 20(2):542-8. PubMed ID: 24285702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetic salts from nitroformate ion.
    Jadhav PM; Radhakrishnan S; Ghule VD; Pandey RK
    J Mol Model; 2015 May; 21(5):134. PubMed ID: 25935336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting the energetic potential of 1,2,4-oxadiazole derivatives: combining the benefits of a 1,2,4-oxadiazole framework with various energetic functionalities.
    Yan C; Wang K; Liu T; Yang H; Cheng G; Zhang Q
    Dalton Trans; 2017 Oct; 46(41):14210-14218. PubMed ID: 28990608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the condensed phase heat of formation of energetic compounds.
    Keshavarz MH
    J Hazard Mater; 2011 Jun; 190(1-3):330-44. PubMed ID: 21458917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.