These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 29427454)
1. Proteomics in biomanufacturing control: Protein dynamics of CHO-K1 cells and conditioned media during apoptosis and necrosis. Albrecht S; Kaisermayer C; Gallagher C; Farrell A; Lindeberg A; Bones J Biotechnol Bioeng; 2018 Jun; 115(6):1509-1520. PubMed ID: 29427454 [TBL] [Abstract][Full Text] [Related]
2. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control. Albrecht S; Kaisermayer C; Reinhart D; Ambrose M; Kunert R; Lindeberg A; Bones J Anal Bioanal Chem; 2018 May; 410(13):3197-3207. PubMed ID: 29607450 [TBL] [Abstract][Full Text] [Related]
3. Elucidation of the CHO Super-Ome (CHO-SO) by Proteoinformatics. Kumar A; Baycin-Hizal D; Wolozny D; Pedersen LE; Lewis NE; Heffner K; Chaerkady R; Cole RN; Shiloach J; Zhang H; Bowen MA; Betenbaugh MJ J Proteome Res; 2015 Nov; 14(11):4687-703. PubMed ID: 26418914 [TBL] [Abstract][Full Text] [Related]
4. Improvements in single-use bioreactor film material composition leads to robust and reliable Chinese hamster ovary cell performance. Kelly PS; Dorival-García N; Paré S; Carillo S; Ta C; Alarcon Miguez A; Coleman O; Harper E; Shannon M; Henry M; Connolly L; Clynes M; Meleady P; Bones J; Barron N Biotechnol Prog; 2019 Jul; 35(4):e2824. PubMed ID: 31017345 [TBL] [Abstract][Full Text] [Related]
5. LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media. Kaushik P; Curell RV; Henry M; Barron N; Meleady P Biotechnol Lett; 2020 Dec; 42(12):2523-2536. PubMed ID: 32648187 [TBL] [Abstract][Full Text] [Related]
6. Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines. Planque C; Kulasingam V; Smith CR; Reckamp K; Goodglick L; Diamandis EP Mol Cell Proteomics; 2009 Dec; 8(12):2746-58. PubMed ID: 19776420 [TBL] [Abstract][Full Text] [Related]
7. More similar than different: Host cell protein production using three null CHO cell lines. Yuk IH; Nishihara J; Walker D; Huang E; Gunawan F; Subramanian J; Pynn AF; Yu XC; Zhu-Shimoni J; Vanderlaan M; Krawitz DC Biotechnol Bioeng; 2015 Oct; 112(10):2068-83. PubMed ID: 25894672 [TBL] [Abstract][Full Text] [Related]
8. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells. Liu Z; Dai S; Bones J; Ray S; Cha S; Karger BL; Li JJ; Wilson L; Hinckle G; Rossomando A Biotechnol Prog; 2015; 31(4):1026-38. PubMed ID: 25857574 [TBL] [Abstract][Full Text] [Related]
9. Proteomic Analysis of Host Cell Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells. Park JH; Jin JH; Lim MS; An HJ; Kim JW; Lee GM Sci Rep; 2017 Mar; 7():44246. PubMed ID: 28281648 [TBL] [Abstract][Full Text] [Related]
10. A Simple Method for In-Depth Proteome Analysis of Mammalian Cell Culture Conditioned Media Containing Fetal Bovine Serum. Nakamura R; Nakajima D; Sato H; Endo Y; Ohara O; Kawashima Y Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33806404 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures. Park JH; Jin JH; Ji IJ; An HJ; Kim JW; Lee GM Biotechnol Bioeng; 2017 Oct; 114(10):2267-2278. PubMed ID: 28627725 [TBL] [Abstract][Full Text] [Related]
12. Mapping the molecular basis for growth related phenotypes in industrial producer CHO cell lines using differential proteomic analysis. Bryan L; Henry M; Kelly RM; Frye CC; Osborne MD; Clynes M; Meleady P BMC Biotechnol; 2021 Jul; 21(1):43. PubMed ID: 34301236 [TBL] [Abstract][Full Text] [Related]
13. Quantitative host cell protein analysis using two dimensional data independent LC-MS(E). Farrell A; Mittermayr S; Morrissey B; Mc Loughlin N; Navas Iglesias N; Marison IW; Bones J Anal Chem; 2015 Sep; 87(18):9186-93. PubMed ID: 26280711 [TBL] [Abstract][Full Text] [Related]
14. Lessons from the Hamster: Cricetulus griseus Tissue and CHO Cell Line Proteome Comparison. Heffner KM; Hizal DB; Yerganian GS; Kumar A; Can Ö; O'Meally R; Cole R; Chaerkady R; Wu H; Bowen MA; Betenbaugh MJ J Proteome Res; 2017 Oct; 16(10):3672-3687. PubMed ID: 28876938 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive CHO SWATH-MS spectral library for robust quantitative profiling of 10,000 proteins. Sim KH; Liu LC; Tan HT; Tan K; Ng D; Zhang W; Yang Y; Tate S; Bi X Sci Data; 2020 Aug; 7(1):263. PubMed ID: 32782267 [TBL] [Abstract][Full Text] [Related]
16. Identification of autocrine growth factors secreted by CHO cells for applications in single-cell cloning media. Lim UM; Yap MG; Lim YP; Goh LT; Ng SK J Proteome Res; 2013 Jul; 12(7):3496-510. PubMed ID: 23763710 [TBL] [Abstract][Full Text] [Related]
17. Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Senger RS; Karim MN Biotechnol Prog; 2003; 19(4):1199-209. PubMed ID: 12892482 [TBL] [Abstract][Full Text] [Related]
18. Monitoring CHO cell cultures: cell stress and early apoptosis assessment by mass spectrometry. Schwamb S; Munteanu B; Meyer B; Hopf C; Hafner M; Wiedemann P J Biotechnol; 2013 Dec; 168(4):452-61. PubMed ID: 24148184 [TBL] [Abstract][Full Text] [Related]
19. Responses of CHO cell lines to increased pCO2 at normal (37 °C) and reduced (33 °C) culture temperatures. Darja O; Stanislav M; Saša S; Andrej F; Lea B; Branka J J Biotechnol; 2016 Feb; 219():98-109. PubMed ID: 26707809 [TBL] [Abstract][Full Text] [Related]
20. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Jiang X; Foldbjerg R; Miclaus T; Wang L; Singh R; Hayashi Y; Sutherland D; Chen C; Autrup H; Beer C Toxicol Lett; 2013 Sep; 222(1):55-63. PubMed ID: 23872614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]