These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29427530)

  • 1. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.
    Gaines JC; Acebes S; Virrueta A; Butler M; Regan L; O'Hern CS
    Proteins; 2018 May; 86(5):581-591. PubMed ID: 29427530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of helix interactions in membrane and soluble alpha-bundle proteins.
    Eilers M; Patel AB; Liu W; Smith SO
    Biophys J; 2002 May; 82(5):2720-36. PubMed ID: 11964258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Packing in protein cores.
    Gaines JC; Clark AH; Regan L; O'Hern CS
    J Phys Condens Matter; 2017 Jul; 29(29):293001. PubMed ID: 28557791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the side-chain dihedral angle distributions of nonpolar, aromatic, and polar amino acids using hard sphere models.
    Zhou AQ; O'Hern CS; Regan L
    Proteins; 2014 Oct; 82(10):2574-84. PubMed ID: 24912976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A threonine zipper that mediates protein-protein interactions: Structure and prediction.
    Oi C; Treado JD; Levine ZA; Lim CS; Knecht KM; Xiong Y; O'Hern CS; Regan L
    Protein Sci; 2018 Nov; 27(11):1969-1977. PubMed ID: 30198622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective repacking reveals that the structures of protein cores are uniquely specified by steric repulsive interactions.
    Gaines JC; Virrueta A; Buch DA; Fleishman SJ; O'Hern CS; Regan L
    Protein Eng Des Sel; 2017 May; 30(5):387-394. PubMed ID: 28201818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of the packing topology of structurally important residues in helical membrane and soluble proteins.
    Pabuwal V; Li Z
    Protein Eng Des Sel; 2009 Feb; 22(2):67-73. PubMed ID: 19054790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of side-chain rotamers in transmembrane proteins.
    Chamberlain AK; Bowie JU
    Biophys J; 2004 Nov; 87(5):3460-9. PubMed ID: 15339811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the physical basis for the side-chain conformational preferences of methionine.
    Virrueta A; O'Hern CS; Regan L
    Proteins; 2016 Jul; 84(7):900-11. PubMed ID: 26917446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.
    Zhang T; Zhang H; Chen K; Ruan J; Shen S; Kurgan L
    Curr Protein Pept Sci; 2010 Nov; 11(7):609-28. PubMed ID: 20887256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural differences between thermophilic and mesophilic membrane proteins.
    Meruelo AD; Han SK; Kim S; Bowie JU
    Protein Sci; 2012 Nov; 21(11):1746-53. PubMed ID: 23001966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A "solvated rotamer" approach to modeling water-mediated hydrogen bonds at protein-protein interfaces.
    Jiang L; Kuhlman B; Kortemme T; Baker D
    Proteins; 2005 Mar; 58(4):893-904. PubMed ID: 15651050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.
    Topham CM; Smith JC
    Comput Biol Chem; 2015 Feb; 54():33-43. PubMed ID: 25544680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random close packing in protein cores.
    Gaines JC; Smith WW; Regan L; O'Hern CS
    Phys Rev E; 2016 Mar; 93(3):032415. PubMed ID: 27078398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steric interactions determine side-chain conformations in protein cores.
    Caballero D; Virrueta A; O'Hern CS; Regan L
    Protein Eng Des Sel; 2016 Sep; 29(9):367-376. PubMed ID: 27416747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward high-resolution prediction and design of transmembrane helical protein structures.
    Barth P; Schonbrun J; Baker D
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15682-7. PubMed ID: 17905872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side chains in transmembrane helices are shorter at helix-helix interfaces.
    Jiang S; Vakser IA
    Proteins; 2000 Aug; 40(3):429-35. PubMed ID: 10861933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and computational evaluation of forces directing the association of transmembrane helices.
    Zhang Y; Kulp DW; Lear JD; DeGrado WF
    J Am Chem Soc; 2009 Aug; 131(32):11341-3. PubMed ID: 19722646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural imperatives impose diverse evolutionary constraints on helical membrane proteins.
    Oberai A; Joh NH; Pettit FK; Bowie JU
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17747-50. PubMed ID: 19815527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation analysis of the side-chains conformational distribution in bound and unbound proteins.
    Kirys T; Ruvinsky AM; Tuzikov AV; Vakser IA
    BMC Bioinformatics; 2012 Sep; 13():236. PubMed ID: 22984947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.