These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29427540)

  • 1. Novel standardized massive bone defect model in rats employing an internal eight-hole stainless steel plate for bone tissue engineering.
    Jiang H; Cheng P; Li D; Li J; Wang J; Gao Y; Zhang S; Cao T; Wang C; Yang L; Pei G
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2162-e2171. PubMed ID: 29427540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of a critical-size segmental rabbit femur defect using bioglass-β-TCP monoblock, a vascularized periosteal flap and BMP-2.
    Pan Z; Jiang P; Xue S; Wang T; Li H; Wang J
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2148-2156. PubMed ID: 29024418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system.
    Liu K; Li D; Huang X; Lv K; Ongodia D; Zhu L; Zhou L; Li Z
    J Surg Res; 2013 Aug; 183(2):493-502. PubMed ID: 23522461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a bilateral femoral large segmental bone defect mouse model potentially applicable to basic research in bone tissue engineering.
    Xing J; Jin H; Hou T; Chang Z; Luo F; Wang P; Li Z; Xie Z; Xu J
    J Surg Res; 2014 Dec; 192(2):454-63. PubMed ID: 24972741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration.
    Guan J; Zhang J; Li H; Zhu Z; Guo S; Niu X; Wang Y; Zhang C
    PLoS One; 2015; 10(5):e0125253. PubMed ID: 25970295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel murine femoral segmental critical-sized defect model stabilized by plate osteosynthesis for bone tissue engineering purposes.
    Manassero M; Viateau V; Matthys R; Deschepper M; Vallefuoco R; Bensidhoum M; Petite H
    Tissue Eng Part C Methods; 2013 Apr; 19(4):271-80. PubMed ID: 22953787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.
    Chen KY; Chung CM; Chen YS; Bau DT; Yao CH
    J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of a Segmental Femoral Critical-size Defect Model in Mice Stabilized by Plate Osteosynthesis.
    Manassero M; Decambron A; Huu Thong BT; Viateau V; Bensidhoum M; Petite H
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27768070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of Large Bone Defects with a Vascularized Periosteal Flap in Combination with Biodegradable Scaffold Seeded with Bone Marrow-Derived Mononuclear Cells: An Experimental Study in Rats.
    Nau C; Henrich D; Seebach C; Schröder K; Fitzsimmons SJ; Hankel S; Barker JH; Marzi I; Frank J
    Tissue Eng Part A; 2016 Jan; 22(1-2):133-41. PubMed ID: 26486307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implant Material, Type of Fixation at the Shaft, and Position of Plate Modify Biomechanics of Distal Femur Plate Osteosynthesis.
    Kandemir U; Augat P; Konowalczyk S; Wipf F; von Oldenburg G; Schmidt U
    J Orthop Trauma; 2017 Aug; 31(8):e241-e246. PubMed ID: 28394844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration.
    Qi Y; Niu L; Zhao T; Shi Z; Di T; Feng G; Li J; Huang Z
    Stem Cell Res Ther; 2015 Dec; 6():256. PubMed ID: 26689714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.
    Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J
    J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue engineered vascularized periosteal flap enriched with MSC/EPCs for the treatment of large bone defects in rats.
    Nau C; Henrich D; Seebach C; Schröder K; Barker JH; Marzi I; Frank J
    Int J Mol Med; 2017 Apr; 39(4):907-917. PubMed ID: 28259928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect exerted by Teriparatide upon Repair Function of β-tricalcium phosphate to ovariectomised rat's femoral metaphysis defect caused by osteoporosis.
    Tao ZS; Zhou WS; Tu KK; Huang ZL; Zhou Q; Sun T; Lv YX; Cui W; Yang L
    Injury; 2015 Nov; 46(11):2134-41. PubMed ID: 26306803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells.
    Wang L; Fan H; Zhang ZY; Lou AJ; Pei GX; Jiang S; Mu TW; Qin JJ; Chen SY; Jin D
    Biomaterials; 2010 Dec; 31(36):9452-61. PubMed ID: 20869769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area.
    Watanabe S; Takabatake K; Tsujigiwa H; Watanabe T; Tokuyama E; Ito S; Nagatsuka H; Kimata Y
    Int J Med Sci; 2016; 13(6):466-76. PubMed ID: 27279797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature particulate calcium phosphates for bone regeneration.
    Araújo MV; Mendes VC; Chattopadhyay P; Davies JE
    Clin Oral Implants Res; 2010 Jun; 21(6):632-41. PubMed ID: 20666790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.