BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 29427885)

  • 21. Strand Displacement-Induced Enzyme-Free Amplification for Label-Free and Separation-Free Ultrasensitive Atomic Fluorescence Spectrometric Detection of Nucleic Acids and Proteins.
    Chen P; Wu P; Zhang Y; Chen J; Jiang X; Zheng C; Hou X
    Anal Chem; 2016 Dec; 88(24):12386-12392. PubMed ID: 28193041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A signal amplification strategy and sensing application using single gold nanoelectrodes.
    Wang D; Hua H; Tang H; Yang C; Chen W; Li Y
    Analyst; 2018 Dec; 144(1):310-316. PubMed ID: 30406238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification.
    Bi S; Jia X; Ye J; Dong Y
    Biosens Bioelectron; 2015 Sep; 71():427-433. PubMed ID: 25950939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational construction of a DNA nanomachine for HIV nucleic acid ultrasensitive sensing.
    Zheng J; Ji X; Du M; Tian S; He Z
    Nanoscale; 2018 Sep; 10(36):17206-17211. PubMed ID: 30191238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification.
    Liu S; Wei W; Wang Y; Fang L; Wang L; Li F
    Biosens Bioelectron; 2016 Jun; 80():208-214. PubMed ID: 26849348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid.
    Wen J; Chen J; Zhuang L; Zhou S
    Biosens Bioelectron; 2016 May; 79():656-60. PubMed ID: 26765529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.
    Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J
    Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An anchored monopodial DNA walker triggered by proximity hybridization for amplified amperometric biosensing of nucleic acid and protein.
    Man Y; Liu J; Wu J; Yin L; Pei H; Wu Q; Xia Q; Ju H
    Anal Chim Acta; 2020 Apr; 1107():48-54. PubMed ID: 32200901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aptazyme-Gold Nanoparticle Sensor for Amplified Molecular Probing in Living Cells.
    Yang Y; Huang J; Yang X; Quan K; Wang H; Ying L; Xie N; Ou M; Wang K
    Anal Chem; 2016 Jun; 88(11):5981-7. PubMed ID: 27167489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of gold nanoparticles to the catalytic DNA strand displacement in leakage reduction and signal amplification.
    Wang B; Zhou X; Yao D; Sun X; He M; Wang X; Yin X; Liang H
    Chem Commun (Camb); 2017 Oct; 53(79):10950-10953. PubMed ID: 28933793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA synergistic enzyme-mediated cascade reaction for homogeneous electrochemical bioassay.
    Zhang Y; Cao X; Deng R; Liu Q; Xia J; Wang Z
    Biosens Bioelectron; 2019 Oct; 142():111510. PubMed ID: 31319327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement.
    Li W; Dong Y; Wang X; Li H; Xu D
    Biosens Bioelectron; 2015 Apr; 66():43-9. PubMed ID: 25460880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visual detection of thrombin using a strip biosensor through aptamer-cleavage reaction with enzyme catalytic amplification.
    Qin C; Wen W; Zhang X; Gu H; Wang S
    Analyst; 2015 Nov; 140(22):7710-7. PubMed ID: 26451394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomimetic 3D DNA Nanomachine via Free DNA Walker Movement on Lipid Bilayers Supported by Hard SiO
    Peng X; Wen ZB; Yang P; Chai YQ; Liang WB; Yuan R
    Anal Chem; 2019 Dec; 91(23):14920-14926. PubMed ID: 31674756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.
    Le BH; Seo YJ
    Anal Chim Acta; 2018 Jan; 999():155-160. PubMed ID: 29254567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Target-Triggered DNAzyme Motor Enabling Homogeneous, Amplified Detection of Proteins.
    Chen J; Zuehlke A; Deng B; Peng H; Hou X; Zhang H
    Anal Chem; 2017 Dec; 89(23):12888-12895. PubMed ID: 29099172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Label-free colorimetric aptasensor based on nicking enzyme assisted signal amplification and DNAzyme amplification for highly sensitive detection of protein.
    Huang Y; Chen J; Zhao S; Shi M; Chen ZF; Liang H
    Anal Chem; 2013 May; 85(9):4423-30. PubMed ID: 23534943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel "signal-on/off" sensing platform for selective detection of thrombin based on target-induced ratiometric electrochemical biosensing and bio-bar-coded nanoprobe amplification strategy.
    Wang L; Ma R; Jiang L; Jia L; Jia W; Wang H
    Biosens Bioelectron; 2017 Jun; 92():390-395. PubMed ID: 27836592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A chronocoulometric aptasensor based on gold nanoparticles as a signal amplification strategy for detection of thrombin.
    Jiao XX; Chen JR; Zhang XY; Luo HQ; Li NB
    Anal Biochem; 2013 Oct; 441(2):95-100. PubMed ID: 23896460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles.
    Yao GH; Liang RP; Huang CF; Zhang L; Qiu JD
    Anal Chim Acta; 2015 Apr; 871():28-34. PubMed ID: 25847158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.