These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1410 related articles for article (PubMed ID: 29427897)

  • 1. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
    Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM
    Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling.
    Farag A; Le Lu ; Roth HR; Liu J; Turkbey E; Summers RM
    IEEE Trans Image Process; 2017 Jan; 26(1):386-399. PubMed ID: 27831881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and multi-level geometrical descriptor analysis in CT and MRI volumes for automatic pancreas segmentation.
    Asaturyan H; Gligorievski A; Villarini B
    Comput Med Imaging Graph; 2019 Jul; 75():1-13. PubMed ID: 31103856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network.
    Yang Z; Zhang L; Zhang M; Feng J; Wu Z; Ren F; Lv Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5937-5940. PubMed ID: 31947200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated pancreas segmentation and volumetry using deep neural network on computed tomography.
    Lim SH; Kim YJ; Park YH; Kim D; Kim KG; Lee DH
    Sci Rep; 2022 Mar; 12(1):4075. PubMed ID: 35260710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks.
    Ouhmich F; Agnus V; Noblet V; Heitz F; Pessaux P
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1275-1284. PubMed ID: 31041697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.
    Fechter T; Adebahr S; Baltas D; Ben Ayed I; Desrosiers C; Dolz J
    Med Phys; 2017 Dec; 44(12):6341-6352. PubMed ID: 28940372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks.
    Cheng R; Roth HR; Lay N; Lu L; Turkbey B; Gandler W; McCreedy ES; Pohida T; Pinto PA; Choyke P; McAuliffe MJ; Summers RM
    J Med Imaging (Bellingham); 2017 Oct; 4(4):041302. PubMed ID: 28840173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical and Clinical Factors Affecting Success Rate of a Deep Learning Method for Pancreas Segmentation on CT.
    Bagheri MH; Roth H; Kovacs W; Yao J; Farhadi F; Li X; Summers RM
    Acad Radiol; 2020 May; 27(5):689-695. PubMed ID: 31537506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation.
    Yan Y; Zhang D
    PLoS One; 2021; 16(5):e0252287. PubMed ID: 34043732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension-contraction transformation network for pancreas segmentation in abdominal CT scans.
    Zheng Y; Luo J
    Comput Biol Med; 2023 Jan; 152():106410. PubMed ID: 36516578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 71.