BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29427945)

  • 1. Bioactive calcium phosphate silicate ceramic surface-modified PLGA for tendon-to-bone healing.
    Guo J; Ning C; Liu X
    Colloids Surf B Biointerfaces; 2018 Apr; 164():388-395. PubMed ID: 29427945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CaSiO₃ microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres.
    Wu C; Zhang Y; Fan W; Ke X; Hu X; Zhou Y; Xiao Y
    J Biomed Mater Res A; 2011 Jul; 98(1):122-31. PubMed ID: 21548064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering.
    Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.
    Khojasteh A; Fahimipour F; Eslaminejad MB; Jafarian M; Jahangir S; Bastami F; Tahriri M; Karkhaneh A; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():780-8. PubMed ID: 27612772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarnotite.
    Duan W; Ning C; Tang T
    J Biomed Mater Res A; 2013 Jul; 101(7):1955-61. PubMed ID: 23225789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure.
    He F; Ye J
    J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment.
    He F; Li J; Ye J
    Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of Ca2SiO4-Ca3(PO4)2 ceramics on adult human mesenchymal stem cell viability, adhesion, proliferation, differentiation and function.
    De Aza PN; García-Bernal D; Cragnolini F; Velasquez P; Meseguer-Olmo L
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4009-20. PubMed ID: 23910308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure.
    He F; Chen Y; Li J; Lin B; Ouyang Y; Yu B; Xia Y; Yu B; Ye J
    J Biomed Mater Res A; 2015 Apr; 103(4):1312-24. PubMed ID: 24890626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study.
    Masaeli R; Jafarzadeh Kashi TS; Dinarvand R; Rakhshan V; Shahoon H; Hooshmand B; Mashhadi Abbas F; Raz M; Rajabnejad A; Eslami H; Khoshroo K; Tahriri M; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():171-83. PubMed ID: 27612702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation.
    Thomas M; Arora A; Katti DS
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():320-32. PubMed ID: 25491835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro.
    Li YH; Wang ZD; Wang W; Ding CW; Zhang HX; Li JM
    Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering.
    Meng ZX; Li HF; Sun ZZ; Zheng W; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):699-706. PubMed ID: 25427476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits.
    Chen SH; Lei M; Xie XH; Zheng LZ; Yao D; Wang XL; Li W; Zhao Z; Kong A; Xiao DM; Wang DP; Pan XH; Wang YX; Qin L
    Acta Biomater; 2013 May; 9(5):6711-22. PubMed ID: 23376238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Calcium Silicate-based Bioceramic Material Promotes Human Osteo- and Odontogenic Stem Cell Proliferation and Survival via the Extracellular Signal-regulated Kinase Signaling Pathway.
    Chen I; Salhab I; Setzer FC; Kim S; Nah HD
    J Endod; 2016 Mar; 42(3):480-6. PubMed ID: 26778265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure.
    Meyer F; Wardale J; Best S; Cameron R; Rushton N; Brooks R
    J Orthop Res; 2012 Jun; 30(6):864-71. PubMed ID: 22105618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.