These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29427945)

  • 41. Incorporation of bioactive glass in calcium phosphate cement: An evaluation.
    Renno AC; van de Watering FC; Nejadnik MR; Crovace MC; Zanotto ED; Wolke JG; Jansen JA; van den Beucken JJ
    Acta Biomater; 2013 Mar; 9(3):5728-39. PubMed ID: 23159565
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functionalized PLGA-doped zirconium oxide ceramics for bone tissue regeneration.
    Lupu-Haber Y; Pinkas O; Boehm S; Scheper T; Kasper C; Machluf M
    Biomed Microdevices; 2013 Dec; 15(6):1055-66. PubMed ID: 23893013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass.
    Yang Y; He F; Ye J
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1004-9. PubMed ID: 27612796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.
    Homaeigohar SSh; Shokrgozar MA; Khavandi A; Sadi AY
    J Biomed Mater Res A; 2008 Feb; 84(2):491-9. PubMed ID: 17618499
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.
    Zhang HX; Xiao GY; Wang X; Dong ZG; Ma ZY; Li L; Li YH; Pan X; Nie L
    J Biomed Mater Res A; 2015 Oct; 103(10):3250-8. PubMed ID: 25809455
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation.
    Choong C; Yuan S; Thian ES; Oyane A; Triffitt J
    J Biomed Mater Res A; 2012 Feb; 100(2):353-61. PubMed ID: 22065559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro.
    El-Ghannam A; Ning CQ
    J Biomed Mater Res A; 2006 Feb; 76(2):386-97. PubMed ID: 16270343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering.
    Qian J; Xu W; Yong X; Jin X; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ferric oxide: A favorable additive to balance mechanical strength and biological activity of silicocarnotite bioceramic.
    Deng F; Rao J; Ning C
    J Mech Behav Biomed Mater; 2020 Sep; 109():103819. PubMed ID: 32543394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of calcium phosphate–hybridized tendon graft on biomechanical behavior in anterior cruciate ligament reconstruction in a goat model: novel technique for improving tendon-bone healing.
    Mutsuzaki H; Sakane M; Fujie H; Hattori S; Kobayashi H; Ochiai N
    Am J Sports Med; 2011 May; 39(5):1059-66. PubMed ID: 21220545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds.
    Kim TH; Yun YP; Park YE; Lee SH; Yong W; Kundu J; Jung JW; Shim JH; Cho DW; Kim SE; Song HR
    Biomed Mater; 2014 Apr; 9(2):025008. PubMed ID: 24518200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics.
    Kamitakahara M; Tatsukawa E; Shibata Y; Umemoto S; Yokoi T; Ioku K; Ikeda T
    J Mater Sci Mater Med; 2016 May; 27(5):97. PubMed ID: 27003839
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of demineralized bone particle/poly(lactic-co-glycolic acid) scaffolds on the attachment and proliferation of mesenchymal stem cells.
    Han KS; Song JE; Kang SJ; Lee D; Khang G
    J Biomater Sci Polym Ed; 2015; 26(2):92-110. PubMed ID: 25431827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Characteristics of MSCs adhesion to polypeptides modified surface polymer PLGA-[ASP-PEG]].
    Yang D; Zheng Q; Guo X; Hao J; Song Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):71-5. PubMed ID: 17333895
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers.
    Qi R; Cao X; Shen M; Guo R; Yu J; Shi X
    J Biomater Sci Polym Ed; 2012; 23(1-4):299-313. PubMed ID: 21244744
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Characteristics of tenocyte adhesion to biologically-modified surface of polymer].
    Qin T; Yang Z; Xie H; Li H; Qin J; Wu Z; Xu S; Cai S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):633-8. PubMed ID: 12561366
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.
    Zhao S; Wang H; Zhang Y; Huang W; Rahaman MN; Liu Z; Wang D; Zhang C
    Acta Biomater; 2015 Mar; 14():185-96. PubMed ID: 25534470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.