These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
488 related articles for article (PubMed ID: 29428074)
1. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Yassin NIR; Omran S; El Houby EMF; Allam H Comput Methods Programs Biomed; 2018 Mar; 156():25-45. PubMed ID: 29428074 [TBL] [Abstract][Full Text] [Related]
2. Reviewing ensemble classification methods in breast cancer. Hosni M; Abnane I; Idri A; Carrillo de Gea JM; Fernández Alemán JL Comput Methods Programs Biomed; 2019 Aug; 177():89-112. PubMed ID: 31319964 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided diagnosis of contrast-enhanced spectral mammography: A feasibility study. Patel BK; Ranjbar S; Wu T; Pockaj BA; Li J; Zhang N; Lobbes M; Zhang B; Mitchell JR Eur J Radiol; 2018 Jan; 98():207-213. PubMed ID: 29279165 [TBL] [Abstract][Full Text] [Related]
4. Needs assessment for next generation computer-aided mammography reference image databases and evaluation studies. Horsch A; Hapfelmeier A; Elter M Int J Comput Assist Radiol Surg; 2011 Nov; 6(6):749-67. PubMed ID: 21448711 [TBL] [Abstract][Full Text] [Related]
5. Computer-aided diagnosis of breast cancer using cytological images: A systematic review. Saha M; Mukherjee R; Chakraborty C Tissue Cell; 2016 Oct; 48(5):461-74. PubMed ID: 27528421 [TBL] [Abstract][Full Text] [Related]
6. Breast cancer detection and classification in digital mammography based on Non-Subsampled Contourlet Transform (NSCT) and Super Resolution. Pak F; Kanan HR; Alikhassi A Comput Methods Programs Biomed; 2015 Nov; 122(2):89-107. PubMed ID: 26206406 [TBL] [Abstract][Full Text] [Related]
7. Improving the Mann-Whitney statistical test for feature selection: an approach in breast cancer diagnosis on mammography. Pérez NP; Guevara López MA; Silva A; Ramos I Artif Intell Med; 2015 Jan; 63(1):19-31. PubMed ID: 25555756 [TBL] [Abstract][Full Text] [Related]
8. Extreme Learning Machine (ELM)-Based Classification of Benign and Malignant Cells in Breast Cancer. Toprak A Med Sci Monit; 2018 Sep; 24():6537-6543. PubMed ID: 30222727 [TBL] [Abstract][Full Text] [Related]
9. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks. Bandeira Diniz JO; Bandeira Diniz PH; Azevedo Valente TL; Corrêa Silva A; de Paiva AC; Gattass M Comput Methods Programs Biomed; 2018 Mar; 156():191-207. PubMed ID: 29428071 [TBL] [Abstract][Full Text] [Related]
10. Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overview. Gao J; Jiang Q; Zhou B; Chen D Math Biosci Eng; 2019 Jul; 16(6):6536-6561. PubMed ID: 31698575 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Al-Masni MA; Al-Antari MA; Park JM; Gi G; Kim TY; Rivera P; Valarezo E; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Apr; 157():85-94. PubMed ID: 29477437 [TBL] [Abstract][Full Text] [Related]
12. Involvement of Machine Learning for Breast Cancer Image Classification: A Survey. Nahid AA; Kong Y Comput Math Methods Med; 2017; 2017():3781951. PubMed ID: 29463985 [TBL] [Abstract][Full Text] [Related]
13. Aiding the Digital Mammogram for Detecting the Breast Cancer Using Shearlet Transform and Neural Network. P S; R T Asian Pac J Cancer Prev; 2018 Sep; 19(9):2665-2671. PubMed ID: 30256567 [TBL] [Abstract][Full Text] [Related]
14. An Efficient Approach for Automated Mass Segmentation and Classification in Mammograms. Dong M; Lu X; Ma Y; Guo Y; Ma Y; Wang K J Digit Imaging; 2015 Oct; 28(5):613-25. PubMed ID: 25776767 [TBL] [Abstract][Full Text] [Related]
15. Anniversary paper: History and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM. Giger ML; Chan HP; Boone J Med Phys; 2008 Dec; 35(12):5799-820. PubMed ID: 19175137 [TBL] [Abstract][Full Text] [Related]
16. A new computer-aided detection approach based on analysis of local and global mammographic feature asymmetry. Kelder A; Lederman D; Zheng B; Zigel Y Med Phys; 2018 Apr; 45(4):1459-1470. PubMed ID: 29431858 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. Tang J; Rangayyan RM; Xu J; El Naqa I; Yang Y IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):236-51. PubMed ID: 19171527 [TBL] [Abstract][Full Text] [Related]
18. Deep Convolutional Neural Networks for breast cancer screening. Chougrad H; Zouaki H; Alheyane O Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided detection mammography for breast cancer screening: systematic review and meta-analysis. Noble M; Bruening W; Uhl S; Schoelles K Arch Gynecol Obstet; 2009 Jun; 279(6):881-90. PubMed ID: 19023581 [TBL] [Abstract][Full Text] [Related]
20. Generating region proposals for histopathological whole slide image retrieval. Ma Y; Jiang Z; Zhang H; Xie F; Zheng Y; Shi H; Zhao Y; Shi J Comput Methods Programs Biomed; 2018 Jun; 159():1-10. PubMed ID: 29650303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]