These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29428274)

  • 1. Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
    Sadeghi H; Kniesburges S; Kaltenbacher M; Schützenberger A; Döllinger M
    J Voice; 2019 Jul; 33(4):385-400. PubMed ID: 29428274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
    Xue Q; Zheng X
    J Voice; 2017 May; 31(3):275-281. PubMed ID: 27178452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.
    Zheng X; Mittal R; Xue Q; Bielamowicz S
    J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx.
    Xue Q; Mittal R; Zheng X; Bielamowicz S
    J Acoust Soc Am; 2012 Sep; 132(3):1602-13. PubMed ID: 22978889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subject-specific computational modeling of human phonation.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Acoust Soc Am; 2014 Mar; 135(3):1445-56. PubMed ID: 24606281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of phonatory characteristics using ex vivo rabbit larynges.
    Döllinger M; Kniesburges S; Berry DA; Birk V; Wendler O; Dürr S; Alexiou C; Schützenberger A
    J Acoust Soc Am; 2018 Jul; 144(1):142. PubMed ID: 30075689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Modeling of Voice Production Using Excised Canine Larynx.
    Jiang W; Farbos de Luzan C; Wang X; Oren L; Khosla SM; Xue Q; Zheng X
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34423809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study of asymmetric glottal jet deflection during phonation.
    Zheng X; Mittal R; Bielamowicz S
    J Acoust Soc Am; 2011 Apr; 129(4):2133-43. PubMed ID: 21476669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis and comparison of flow fields in normal larynx and larynx with unilateral vocal fold paralysis.
    Bagheri Sarvestani A; Goshtasbi Rad E; Iravani K
    Comput Methods Biomech Biomed Engin; 2018 Jun; 21(8):532-540. PubMed ID: 30024283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of vortical flow structures on the glottal jet location in the supraglottal region.
    Kniesburges S; Hesselmann C; Becker S; Schlücker E; Döllinger M
    J Voice; 2013 Sep; 27(5):531-44. PubMed ID: 23911009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanisms of subharmonic tone generation in a synthetic larynx model.
    Kniesburges S; Lodermeyer A; Becker S; Traxdorf M; Döllinger M
    J Acoust Soc Am; 2016 Jun; 139(6):3182. PubMed ID: 27369142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.