These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 29428356)
1. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. Han SS; Kim MS; Lim W; Park GH; Park I; Chang SE J Invest Dermatol; 2018 Jul; 138(7):1529-1538. PubMed ID: 29428356 [TBL] [Abstract][Full Text] [Related]
2. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. Jinnai S; Yamazaki N; Hirano Y; Sugawara Y; Ohe Y; Hamamoto R Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32751349 [TBL] [Abstract][Full Text] [Related]
3. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. Marchetti MA; Liopyris K; Dusza SW; Codella NCF; Gutman DA; Helba B; Kalloo A; Halpern AC; J Am Acad Dermatol; 2020 Mar; 82(3):622-627. PubMed ID: 31306724 [TBL] [Abstract][Full Text] [Related]
4. Keratinocytic Skin Cancer Detection on the Face Using Region-Based Convolutional Neural Network. Han SS; Moon IJ; Lim W; Suh IS; Lee SY; Na JI; Kim SH; Chang SE JAMA Dermatol; 2020 Jan; 156(1):29-37. PubMed ID: 31799995 [TBL] [Abstract][Full Text] [Related]
5. The challenge of diagnosing seborrheic keratosis by reflectance confocal microscopy. Guo A; Chen J; Yang C; Ding Y; Zeng Q; Tan L Skin Res Technol; 2018 Nov; 24(4):663-666. PubMed ID: 29797357 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population. Wang SQ; Zhang XY; Liu J; Tao C; Zhu CY; Shu C; Xu T; Jin HZ Chin Med J (Engl); 2020 Sep; 133(17):2027-2036. PubMed ID: 32826613 [TBL] [Abstract][Full Text] [Related]
7. Skin lesion classification with ensembles of deep convolutional neural networks. Harangi B J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029 [TBL] [Abstract][Full Text] [Related]
8. Reflectance confocal microscopy: Diagnostic criteria of common benign and malignant neoplasms, dermoscopic and histopathologic correlates of key confocal criteria, and diagnostic algorithms. Shahriari N; Grant-Kels JM; Rabinovitz H; Oliviero M; Scope A J Am Acad Dermatol; 2021 Jan; 84(1):17-31. PubMed ID: 32565210 [TBL] [Abstract][Full Text] [Related]
9. Real-time high-resolution millimeter-wave imaging for in-vivo skin cancer diagnosis. Mirbeik A; Ashinoff R; Jong T; Aued A; Tavassolian N Sci Rep; 2022 Mar; 12(1):4971. PubMed ID: 35322133 [TBL] [Abstract][Full Text] [Related]
10. Deep convolutional neural network with fusion strategy for skin cancer recognition: model development and validation. Juan CK; Su YH; Wu CY; Yang CS; Hsu CH; Hung CL; Chen YJ Sci Rep; 2023 Oct; 13(1):17087. PubMed ID: 37816815 [TBL] [Abstract][Full Text] [Related]
11. The Application of Deep Learning in the Risk Grading of Skin Tumors for Patients Using Clinical Images. Zhao XY; Wu X; Li FF; Li Y; Huang WH; Huang K; He XY; Fan W; Wu Z; Chen ML; Li J; Luo ZL; Su J; Xie B; Zhao S J Med Syst; 2019 Jul; 43(8):283. PubMed ID: 31300897 [TBL] [Abstract][Full Text] [Related]
12. Dermatoscopic Findings of Seborrheic Keratosis in Melanoma. Brandão ML; Oliveira Lima CM; Moura HH; Ishida C; Campos-do-Carmo G; Cuzzi T; Ramos-E-Silva M Acta Dermatovenerol Croat; 2016 Jun; 24(2):144-7. PubMed ID: 27477176 [TBL] [Abstract][Full Text] [Related]
13. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Marchetti MA; Codella NCF; Dusza SW; Gutman DA; Helba B; Kalloo A; Mishra N; Carrera C; Celebi ME; DeFazio JL; Jaimes N; Marghoob AA; Quigley E; Scope A; Yélamos O; Halpern AC; J Am Acad Dermatol; 2018 Feb; 78(2):270-277.e1. PubMed ID: 28969863 [TBL] [Abstract][Full Text] [Related]
14. Assistant Diagnosis of Basal Cell Carcinoma and Seborrheic Keratosis in Chinese Population Using Convolutional Neural Network. Huang K; He X; Jin Z; Wu L; Zhao X; Wu Z; Wu X; Xie Y; Wan M; Li F; Liu D; Yu N; Li M; Su J; Zhao S; Chen X J Healthc Eng; 2020; 2020():1713904. PubMed ID: 32832046 [TBL] [Abstract][Full Text] [Related]
15. Late fusion of deep and shallow features to improve discrimination of actinic keratosis from normal skin using clinical photography. Spyridonos P; Gaitanis G; Likas A; Bassukas ID Skin Res Technol; 2019 Jul; 25(4):538-543. PubMed ID: 30762255 [TBL] [Abstract][Full Text] [Related]
16. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network. Han SS; Park GH; Lim W; Kim MS; Na JI; Park I; Chang SE PLoS One; 2018; 13(1):e0191493. PubMed ID: 29352285 [TBL] [Abstract][Full Text] [Related]
17. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Fujisawa Y; Otomo Y; Ogata Y; Nakamura Y; Fujita R; Ishitsuka Y; Watanabe R; Okiyama N; Ohara K; Fujimoto M Br J Dermatol; 2019 Feb; 180(2):373-381. PubMed ID: 29953582 [TBL] [Abstract][Full Text] [Related]
18. Dermatologist-level classification of skin cancer with deep neural networks. Esteva A; Kuprel B; Novoa RA; Ko J; Swetter SM; Blau HM; Thrun S Nature; 2017 Feb; 542(7639):115-118. PubMed ID: 28117445 [TBL] [Abstract][Full Text] [Related]
19. Skin Diseases Classification Using Deep Leaning Methods. UdriȘtoiu AL; Stanca AE; Ghenea AE; Vasile CM; Popescu M; UdriȘtoiu ȘC; Iacob AV; Castravete S; Gruionu LG; Gruionu G Curr Health Sci J; 2020; 46(2):136-140. PubMed ID: 32874685 [TBL] [Abstract][Full Text] [Related]
20. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]