These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 29428563)
1. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel. Doinikov AA; Thibault P; Marmottant P Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563 [TBL] [Abstract][Full Text] [Related]
2. Acoustic streaming in a microfluidic channel with a reflector: Case of a standing wave generated by two counterpropagating leaky surface waves. Doinikov AA; Thibault P; Marmottant P Phys Rev E; 2017 Jul; 96(1-1):013101. PubMed ID: 29347059 [TBL] [Abstract][Full Text] [Related]
3. Acoustic streaming generated by two orthogonal standing waves propagating between two rigid walls. Doinikov AA; Thibault P; Marmottant P J Acoust Soc Am; 2017 Feb; 141(2):1282. PubMed ID: 28253669 [TBL] [Abstract][Full Text] [Related]
4. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel. Doinikov AA; Combriat T; Thibault P; Marmottant P Phys Rev E; 2016 Sep; 94(3-1):033109. PubMed ID: 27739843 [TBL] [Abstract][Full Text] [Related]
6. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
7. Viscous torque on spherical micro particles in two orthogonal acoustic standing wave fields. Lamprecht A; Schwarz T; Wang J; Dual J J Acoust Soc Am; 2015 Jul; 138(1):23-32. PubMed ID: 26233003 [TBL] [Abstract][Full Text] [Related]
8. Acoustofluidics 15: streaming with sound waves interacting with solid particles. Sadhal SS Lab Chip; 2012 Aug; 12(15):2600-11. PubMed ID: 22744212 [TBL] [Abstract][Full Text] [Related]
9. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Devendran C; Albrecht T; Brenker J; Alan T; Neild A Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363 [TBL] [Abstract][Full Text] [Related]
10. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. Gedge M; Hill M Lab Chip; 2012 Sep; 12(17):2998-3007. PubMed ID: 22842855 [TBL] [Abstract][Full Text] [Related]
11. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. Hamilton MF; Ilinskii YA; Zabolotskaya EA J Acoust Soc Am; 2003 Jan; 113(1):153-60. PubMed ID: 12558255 [TBL] [Abstract][Full Text] [Related]
12. Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods. Sadhal SS Lab Chip; 2012 Jul; 12(13):2292-300. PubMed ID: 22660643 [TBL] [Abstract][Full Text] [Related]
13. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Wiklund M; Green R; Ohlin M Lab Chip; 2012 Jul; 12(14):2438-51. PubMed ID: 22688253 [TBL] [Abstract][Full Text] [Related]
14. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Collins DJ; Ma Z; Han J; Ai Y Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136 [TBL] [Abstract][Full Text] [Related]
15. A numerical study of the coupling between Rayleigh streaming and heat transfer at high acoustic level. Daru V; Weisman C; Baltean-Carlès D; Bailliet H J Acoust Soc Am; 2021 Dec; 150(6):4501. PubMed ID: 34972296 [TBL] [Abstract][Full Text] [Related]
16. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves. Hsu JC; Chang CY Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473 [TBL] [Abstract][Full Text] [Related]
17. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming. Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386 [TBL] [Abstract][Full Text] [Related]
18. Applications of ultrasound streaming and radiation force in biosensors. Kuznetsova LA; Coakley WT Biosens Bioelectron; 2007 Mar; 22(8):1567-77. PubMed ID: 16979887 [TBL] [Abstract][Full Text] [Related]
19. Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound. Castro A; Hoyos M Ultrasonics; 2016 Mar; 66():166-171. PubMed ID: 26705604 [TBL] [Abstract][Full Text] [Related]
20. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves. Bernard I; Doinikov AA; Marmottant P; Rabaud D; Poulain C; Thibault P Lab Chip; 2017 Jul; 17(14):2470-2480. PubMed ID: 28617509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]