These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 29428563)

  • 41. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels.
    Muller PB; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043016. PubMed ID: 25375602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acoustic streaming outside and inside a fluid particle undergoing monopole and dipole oscillations.
    Baasch T; Doinikov AA; Dual J
    Phys Rev E; 2020 Jan; 101(1-1):013108. PubMed ID: 32069564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow.
    Cha B; Lee SH; Iqrar SA; Yi HG; Kim J; Park J
    Ultrason Sonochem; 2023 Oct; 99():106575. PubMed ID: 37683414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave.
    Červenka M; Bednařík M
    J Acoust Soc Am; 2018 Feb; 143(2):727. PubMed ID: 29495724
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.
    Cho E; Chung SK; Rhee K
    Ultrasonics; 2015 Sep; 62():66-74. PubMed ID: 26025507
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theory and simulation of electroosmotic suppression of acoustic streaming.
    Winckelmann BG; Bruus H
    J Acoust Soc Am; 2021 Jun; 149(6):3917. PubMed ID: 34241445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acoustofluidics 16: acoustics streaming near liquid-gas interfaces: drops and bubbles.
    Sadhal SS
    Lab Chip; 2012 Aug; 12(16):2771-81. PubMed ID: 22776990
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip.
    Ohlin M; Iranmanesh I; Christakou AE; Wiklund M
    Lab Chip; 2015 Aug; 15(16):3341-9. PubMed ID: 26156858
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).
    Ng JW; Devendran C; Neild A
    Lab Chip; 2017 Oct; 17(20):3489-3497. PubMed ID: 28929163
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Leap behavior of ultrasonic standing waves in the liquids.
    Kozhemyakin GN
    Ultrasonics; 2014 Feb; 54(2):731-6. PubMed ID: 24125532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phase separation of a nonionic surfactant aqueous solution in a standing surface acoustic wave for submicron particle manipulation.
    Zhao L; Niu P; Casals E; Zeng M; Wu C; Yang Y; Sun S; Zheng Z; Wang Z; Ning Y; Duan X; Pang W
    Lab Chip; 2021 Feb; 21(4):660-667. PubMed ID: 33393566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic flow switching
    Jung JH; Destgeer G; Park J; Ahmed H; Park K; Sung HJ
    RSC Adv; 2018 Jan; 8(6):3206-3212. PubMed ID: 35541169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acoustic streaming of a sharp edge.
    Ovchinnikov M; Zhou J; Yalamanchili S
    J Acoust Soc Am; 2014 Jul; 136(1):22-9. PubMed ID: 24993192
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sub-micron particle manipulation in an ultrasonic standing wave: applications in detection of clinically important biomolecules.
    Sobanski MA; Tucker CR; Thomas NE; Coakley WT
    Bioseparation; 2000; 9(6):351-7. PubMed ID: 11518238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations.
    Talebi M; Setareh M; Saffar-Avval M; Hosseini Abardeh R
    Ultrasonics; 2017 Apr; 76():52-62. PubMed ID: 28061373
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acoustofluidics 2: perturbation theory and ultrasound resonance modes.
    Bruus H
    Lab Chip; 2012 Jan; 12(1):20-8. PubMed ID: 22105715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.